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ENTIRE SOLUTIONS OF DELAY
DIFFERENTIAL EQUATIONS OF

MALMQUIST TYPE∗

Ran-Ran Zhang1 and Zhi-Bo Huang2,†

Abstract The celebrated Malmquist theorem states that a differential equa-
tion, which admits a transcendental meromorphic solution, reduces into a
Riccati differential equation. Motivated by the integrability of difference
equations, this paper investigates the delay differential equations of form
w(z + 1)− w(z − 1) + a(z)w

′(z)
w(z)

= R(z, w(z))(∗), where R(z, w(z)) is an irre-
ducible rational function in w(z) with rational coefficients and a(z) is a rational
function. We characterize all reduced forms when the equation (∗) admits a
transcendental entire solution with hyper-order less than one. When we com-
pare with the results obtained by Halburd and Korhonen[Proc. Amer. Math.
Soc. 145, no.6 (2017)], we obtain the reduced forms without the assump-
tions that the denominator of rational function R(z, w(z)) has roots that are
nonzero rational functions in z. The value distribution and forms of transcen-
dental entire solutions for the reduced delay differential equations are studied.
The existence of finite iterated order entire solutions of the Kac-van Moerbeke
delay differential equation is also detected.
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1. Introduction

We assume that the reader is familiar with the standard notations and basic results
of the Nevanlinna theory, see e.g. [12]. Let w be a meromorphic function in the
complex plane. The order of growth of w is denoted by σ(w) and the hyper-order
of w is defined by

σ2(w) = lim sup
r→∞

log log T (r, w)

log r
.

†The corresponding author. Email: huangzhibo@scnu.edu.cn(Z. Huang)
1Department of Mathematics, Guangdong University of Education,
Guangzhou 510303, China

2School of Mathematical Sciences,South China Normal University, Guangzhou,
510631, China

∗The authors were supported by National Natural Science Foundation of
China (11801093, 11871260), National Science Foundation of Guangdong
(2018A030313508) and Characteristic Innovation Project (Natural Science)
of Guangdong Province(2019KTSCX119).

http://jaac-online.com
http://dx.doi.org/10.11948/20190176


Delay differential equations 1721

For a ∈ C, the deficiency in which zeros of w − a are counted only once is defined
by

Θ(a,w) = 1− lim sup
r→∞

N(r, 1
w−a )

T (r, w)
.

Moreover, we say that a meromorphic function α is a small function of w if T (r, α) =
S(r, w), where S(r, w) = o(T (r, w)) as r → ∞, possibly outside of an exceptional
set of finite logarithmic measure.

The Malmquist type theorems concentrate upon necessary conditions for certain
types of differential equations to admit a meromorphic solution growing rapidly
with respect to the coefficients. The following result is the celebrated Malmquist
theorem.

Theorem 1.1 ( [16, 18]). Let R(z, y) be rational in both arguments. If the differ-
ential equation

y′ = R(z, y)

admits a transcendental meromorphic solution, then y′ = R(z, y) reduces into a
Riccati differential equation

y′ = a0(z) + a1(z)y + a2(z)y
2

with rational coefficients.

N. Steinmetz [21] generalized the Malmquist-Yosida theorem into the birational
cases of (y

′
)n = R(z, y), which actually admit transcendental meromorphic solu-

tions, and then reduce into (y
′
)n =

2n∑
i=0

αi(z)y
i, where at least one of the coefficients

αi(z) does not vanish.
Motivated by the integrability of difference equations, Halburd and Korhonen [9]

obtained the following result, which indicates that the existence of a finite-order
meromorphic solution of a difference equation is a strong indicator of integrability
of the equation.

Theorem 1.2 ( [9, Theorem 1.1]). If the equation

w(z + 1) + w(z − 1) = R(z, w(z)) (1.1)

where R(z, w(z)) is rational in w(z) with meromorphic coefficients in z, has an ad-
missible meromorphic solution of finite order, then either w(z) satisfies a difference
Riccati equation

w(z + 1) =
p(z + 1)w(z) + q(z)

w(z) + p(z)
,

where p, q ∈ S(w) = {f meromorphic : T (r, f) = o(T (r, w))}, or equation (1.1) can
be transformed by a linear change in w(z) to one of the following equations:

w(z + 1) + w(z) + w(z − 1) =
π1(z)z + π2(z)

w(z)
+ κ1(z),

w(z + 1)− w(z) + w(z − 1) =
π1(z)z + π2(z)

w(z)
+ (−1)zκ1(z),



1722 R. Zhang & Z. Huang

w(z + 1) + w(z − 1) =
π1(z)z + π3(z)

w(z)
+ π2(z),

w(z + 1) + w(z − 1) =
π1(z)z + κ1(z)

w(z)
+
π2(z)

w(z)2
,

w(z + 1) + w(z − 1) =
(π1(z)z + κ1(z))w(z) + π2(z)

(−1)−z − w(z)2
,

w(z + 1) + w(z − 1) =
(π1(z)z + κ1(z))w(z) + π2(z)

1− w(z)2
,

w(z + 1)w(z) + w(z)w(z − 1) = p(z),

w(z + 1) + w(z − 1) = p(z)w(z) + q(z),

where πk(z), κk(z) ∈ S(w) are arbitrary finite-order periodic functions with period
k.

Theorem 1.2 is a Malmquist type theorem for difference equations. Furthermore,
many other researchers (see, e.g. [1,14,15,20,26,27]) discussed the complex difference
equations of Malmquist type, and mainly presented the value distribution of their
meromorphic solutions.

Some reductions of integrable differential-difference equations are known to yield
delay differential equations with formal continuum limits to differential Painlevé
equations. Painlevé-type delay differential equations were also considered in Gram-
maticos, Ramani and Moreira [6] from the point of view of a kind of singularity
confinement. Viallet [23] has introduced a notion of algebraic entropy for such
equations. Halburd and Korhonen [11] discussed a delay differential equation and
obtained

Theorem 1.3 ( [11, Theorem 1.1]). Let w(z) be a non-rational meromorphic solu-
tion of

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= R(z, w(z)) =

P (z, w(z))

Q(z, w(z))
, (1.2)

where a(z) is rational, P (z, w) is a polynomial in w having rational coefficients in z,
and Q(z, w) is a polynomial in w(z) with roots that are nonzero rational functions
of z and not roots of P (z, w). If σ2(w) < 1, then

degw(P ) = degw(Q) + 1 ≤ 3 or degw(R) ≤ 1.

The notation degw(P ) = degw(P (z, w)) is used to denote the degree of P as
a polynomial in w and degw(R) = max{degw(P ),degw(Q)} is used to denote the
degree of R as a rational function in w.

In Theorem 1.3, Halburd and Korhonen obtained necessary conditions for the
equation (1.2) to admit a non-rational meromorphic solution of hyper-order less
than one, under the assumption that “Q(z, w) has roots that are nonzero rational
functions of z”. Here, we pose two questions related to Theorem 1.3.

Question 1. Is it possible to obtain some reduction results for the equation
(1.2) if the assumption that “Q(z, w) has roots that are nonzero rational functions
of z” of Theorem 1.3 is dropped?

Question 2. Is it possible to say something about the properties, including the
growth order , the distribution of a-values and the existence of solutions of reduced
forms of the equation (1.2)?
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In this paper, we first answer the above Question 1 when the equation (1.2)
has a transcendental entire solution. We use different technique, which is different
from the method and assumption used by Halburd and Korhonen [11], to get the all
reduced forms of certain delay differential equation (1.2). We second focus on the
above Question 2. We present the value distribution and forms of transcendental
entire solutions for the reduced delay differential equations, and prove that the
Kac-van Moerbeke delay differential equation, which is a special reduced form of
equation (1.2), has no finite iterated order entire solutions.

The remainders of the paper are organized as follows. In Section 2, we mainly
focus our interesting on Question 1 and show how to detect the reduced forms of
delay differential equation (1.2). In Section 3, the value distribution and forms
of transcendental entire solutions for the reduced delay differential equations have
been investigated. The existence of finite iterated order entire solutions of the Kac-
van Moerbeke delay differential equation is verified in Section 4. Some examples
are listed to show our results occur indeed in Section 5.

2. Reduced forms of delay differential equation
In this section, we mainly try to answer the above Question 1, and characterize all
reduced forms when delay differential equation (1.2) admits a transcendental entire
solution with hyper-order less than one. We drop the assumption that “Q(z, w)
has roots that are nonzero rational functions of z” in Theorem 1.3, and obtain the
following results.

Theorem 2.1. Let R(z, w(z)) ̸≡ 0 be an irreducible rational function in w(z) with
rational coefficients and let a(z) be a rational function. If the equation (1.2) admits
a transcendental entire solution w(z) with σ2(w) < 1, then (1.2) reduces into

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= a1(z)w(z) + a0(z), (2.1)

or

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
=
a2(z)w(z)

2 + a1(z)w(z) + a0(z)

w(z)
, (2.2)

where aj(z), j = 0, 1, 2 are rational functions.

Remark 2.1. Theorem 2.1 is a reduction result which characterizes all cases ac-
tually may appear, in which the equation (1.2) has transcendental entire solutions
with hyper-order less than one. So Theorem 2.1 can be viewed as a weaker form of
delay differential analogue of Malmquist theorem.

By Theorem 2.1, we easily get the following corollary.

Corollary 2.1. Let a(z) be a rational function, P (z, w) be a polynomial in w having
rational coefficients in z, and Q(z, w) be a polynomial in w(z) with roots that are
nonzero rational functions of z and not roots of P (z, w). Then the equation (1.2)
has no transcendental entire solutions with σ2(w) < 1.

Remark 2.2. Theorem 1.3 has an assumption “Q(z, w) has roots that are nonzero
rational functions of z”, under which the equation (1.2) has no transcendental entire
solutions with σ2(w) < 1. So Theorem 2.1 is independent of Theorem 1.3, though
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Theorem 1.3 focuses on the case that (1.2) has a non-rational meromorphic solution
with σ2(w) < 1 and Theorem 2.1 focuses on the case that (1.2) has a transcendental
entire solution with σ2(w) < 1.

We now give some lemmas to prove Theorem 2.1. The first of these lemmas is
a version of the difference analogue of the logarithmic derivative lemma.

Lemma 2.1 ( [10, Theorem 5.1]). Let f(z) be a nonconstant meromorphic function
and c ∈ C. If σ2(f) < 1 and ε > 0, then

m

(
r,
f(z + c)

f(z)

)
= o

(
T (r, f)

r1−σ2(f)−ε

)
for all r outside of a set of finite logarithmic measure.

Applying logarithmic derivative lemma and Lemma 2.1 to Theorem 2.3 in [17],
we get the following lemma, which is a version of the difference analogue of the
Clunie lemma.

Lemma 2.2. Let f(z) be a transcendental meromorphic solution of hyper order
σ2(f) < 1 of a differential-difference equation of the form

U(z, f)P (z, f) = Q(z, f),

where U(z, f) is a difference polynomial in f(z) with small meromorphic coeffi-
cients, P (z, f), Q(z, f) are differential-difference polynomials in f(z) with small
meromorphic coefficients, degf (U) = n and degf (Q) ≤ n. Moreover, we assume
that U(z, f) contains just one term of maximal total degree in f(z) and its shifts.
Then

m
(
r, P (z, f)

)
= S(r, f).

The following lemma is a generalisation of Borel’s theorem on linear combina-
tions of entire functions.

Lemma 2.3 ( [7, pp.69–70] or [25, p.82]). Suppose that f1(z), f2(z), · · · , fn(z) are
meromorphic functions and that g1(z), g2(z), · · · , gn(z) are entire functions satisfy-
ing the following conditions.

(i)
n∑
j=1

fj(z)e
gj(z) ≡ 0;

(ii) gj(z)− gk(z) are not constants for 1 ≤ j < k ≤ n;
(iii) for 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, fj) = o{T (r, egh−gk)} (r → ∞, r ̸∈ E),

where E ⊂ (1,∞) is of finite linear measure or finite logarithmic measure.

Then fj(z) ≡ 0 (j = 1, 2, · · · , n).

The following Lemma 2.4, due to Valiron and Mohon’ko, is of essential im-
portance in the theory of complex differential, difference and differential-difference
equations.
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Lemma 2.4 ( [16, p.29]). Let f be a meromorphic function. Then for all irreducible
rational functions in f

R(z, f) =

∑p
i=0 ai(z)f

i∑q
j=0 bj(z)f

j

with meromorphic coefficients ai(z), bj(z) such thatT (r, ai) = S(r, f), i = 0, · · · , p

T (r, bj) = S(r, f), j = 0, · · · , q,

the characteristic function of R(z, f) satisfies

T (r,R(z, f)) = max{p, q}T (r, f) + S(r, f).

Next we prove the following lemma related to the reduced form (2.1).

Lemma 2.5. Let R(z, w(z)) ̸≡ 0 be an irreducible rational function in w(z) with
rational coefficients, let a(z) ̸≡ 0 be a rational function and let w(z) be a transcen-
dental entire solution of the equation (1.2). If σ2(w) < 1 and w(z) has finitely many
zeros, then (1.2) is of the form (2.1), where a1(z), a0(z) are rational functions with
a1(z) ̸≡ 0 or a0(z) ̸≡ 0.

Proof. By applying Hadamard factorization theorem, we see that w(z) takes the
form

w(z) = H(z)eg(z), (2.3)

where H(z) is a non-zero polynomial, g(z) is a non-constant entire function such
that σ2(w(z)) = σ2(e

g(z)) = σ(g(z)) < 1. Substituting (2.3) into the equation (1.2)
and setting

s(z) = H(z + 1)eg(z+1)−g(z) −H(z − 1)eg(z−1)−g(z),

we get

s(z)eg(z) + a(z)

(
H ′(z)

H(z)
+ g′(z)

)
=
P (z, w(z))

Q(z, w(z))
. (2.4)

If s(z) ≡ 0, then by (2.4), we obtain

T

(
r,
P (z, w(z))

Q(z, w(z))

)
= S(r, eg) = S(r, w).

By Lemma 2.4, we have degw(Q) = degw(P ) = 0. Thus, the equation (1.2) is of
the form (2.1), where a0(z) ̸≡ 0 is a rational function and a1(z) ≡ 0.

If s(z) ̸≡ 0, then we deduce from σ2(e
g(z)) < 1 and Lemma 2.1 that

T (r, s(z)) = m(r, s(z)) ≤ m

(
r,
eg(z+1)

eg(z)

)
+m

(
r,
eg(z−1)

eg(z)

)
+O(log r) = S(r, eg).

So we get from (2.4) that

T

(
r,
P (z, w(z))

Q(z, w(z))

)
≤ T (r, eg(z)) + S(r, eg) = T (r, w(z)) + S(r, w).
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The above inequality and Lemma 2.4 show that max{degw(P ),degw(Q)} ≤ 1.
Thus, (2.4) is of the form

s(z)eg(z) + a(z)

(
H ′(z)

H(z)
+ g′(z)

)
=
ã1(z)H(z)eg(z) + ã0(z)

b̃1(z)H(z)eg(z) + b̃0(z)
, (2.5)

where ã1(z), ã0(z), b̃1(z), b̃0(z) are rational functions.
It follows from (2.5) that

s(z)b̃1(z)H(z)e2g(z)

+

(
b̃0(z)s(z) + b̃1(z)H(z)a(z)

(
H ′(z)

H(z)
+ g′(z)

)
− ã1(z)H(z)

)
eg(z)

+ b̃0(z)a(z)

(
H ′(z)

H(z)
+ g′(z))

)
− ã0(z) = 0.

By this equality and Lemma 2.3, we obtain b̃1(z) ≡ 0, and then we deduce from
(2.5) that the equation (1.2) is of the form (2.1), where a1(z) ̸≡ 0 and a0(z) are
rational functions.

Finally, we consider the case where the equation (1.2) reduces into (2.2), and
get the following Lemma.

Lemma 2.6. Let R(z, w(z)) ̸≡ 0 be an irreducible rational function in w(z) with
rational coefficients, let a(z) ̸≡ 0 be a rational function and let w(z) be a transcen-
dental entire solution of the equation (1.2). If σ2(w) < 1 and there exists a rational
function r(z) ̸≡ 0 such that w(z) + r(z) has finitely many zeros, then (1.2) is of the
form (2.2), where a2(z), a1(z), a0(z) are rational functions with a0(z) ̸≡ 0.

Proof. It follows from Hadamard factorization theorem that w(z) takes the form

w(z) = H(z)eg(z) − r(z),

where H(z) is a non-zero polynomial, g(z) is a non-constant entire function such
that σ2(w(z)) = σ2(e

g(z)) = σ(g(z)) < 1. Setting

s(z) = H(z + 1)eg(z+1)−g(z) −H(z − 1)eg(z−1)−g(z),

we have

w(z + 1)− w(z − 1) = s(z)
w(z) + r(z)

H(z)
− r(z + 1) + r(z − 1), (2.6)

w′(z) =

(
H ′(z)

H(z)
+ g′(z)

)
w(z) + r(z)

(
H ′(z)

H(z)
+ g′(z)− r′(z)

r(z)

)
. (2.7)

We deduce from (1.2) and Lemmas 2.1 and 2.4 that

max{degw(P ),degw(Q)}T (r, w(z)) +O(log r)

=T

(
r,
P (z, w(z))

Q(z, w(z))

)
=m

(
r, w(z + 1)− w(z − 1) + a(z)

w′(z)

w(z)

)
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+N

(
r, w(z + 1)− w(z − 1) + a(z)

w′(z)

w(z)

)
≤m(r, w(z)) +m

(
r,
w(z + 1)

w(z)

)
+m

(
r,
w(z − 1)

w(z)

)
+m

(
r,
w′(z)

w(z)

)
+N

(
r,

1

w(z)

)
+ S(r, w) ≤ 2T (r, w(z)) + S(r, w),

which gives max{degw(P ),degw(Q)} ≤ 2. Thus, substituting (2.6) and (2.7) into
(1.2), we conclude

s(z)
H(z)w(z)

2 + t(z)w(z) + a(z)r(z)
(
H′(z)
H(z) + g′(z)− r′(z)

r(z)

)
w(z)

=
ã2(z)w(z)

2 + ã1(z)w(z) + ã0(z)

b̃2(z)w(z)2 + b̃1(z)w(z) + b̃0(z)
,

(2.8)

where

t(z) =
s(z)r(z)

H(z)
− r(z + 1) + r(z − 1) + a(z)

(
H ′(z)

H(z)
+ g′(z)

)
,

and ãj(z) and b̃j(z)(j = 0, 1, 2) are rational functions. We futher deduce from
Lemma 2.1 that T (r, s(z)) = S(r, w) since σ2(eg(z)) < 1. Thus all coefficients in
(2.8) are small functions relative to w(z).

Since H(z) is a polynomial, r(z) is a rational function and g(z) is a non-constant
entire function, we deduce that g′(z) ̸≡ r′(z)

r(z) − H′(z)
H(z) , which gives

a(z)r(z)

(
H ′(z)

H(z)
+ g′(z)− r′(z)

r(z)

)
̸≡ 0. (2.9)

If s(z) ̸≡ 0, then multiplying both sides of (2.8) by w(z)(b̃2(z)w(z)2+b̃1(z)w(z)+
b̃0(z)), we conclude

b̃2(z)
s(z)

H(z)
w(z)4 + t3(z)w(z)

3 + t2(z)w(z)
2 + t1(z)w(z)

+ b̃0(z)a(z)r(z)

(
H ′(z)

H(z)
+ g′(z)− r′(z)

r(z)

)
= 0,

(2.10)

where tj(z)(j = 1, 2, 3) are all small functions relative to w(z). By (2.9), (2.10) and
Lemma 2.4, we have b̃2(z) ≡ 0 and b̃0(z) ≡ 0. So the equation (1.2) is of the form
(2.2), where aj(z)(j = 0, 1, 2) are rational functions. Recalling that R(z, w(z)) is
irreducible, we get a0(z) ̸≡ 0.

If s(z) ≡ 0, then by (2.8) and Lemma 2.4, we have max{degw(P ),degw(Q)} = 1.
This shows that (2.8) reduces into

t(z)w(z) + a(z)r(z)
(
H′(z)
H(z) + g′(z)− r′(z)

r(z)

)
w(z)

=
ã1(z)w(z) + ã0(z)

b̃1(z)w(z) + b̃0(z)
. (2.11)

Using the same reasoning as above, we see from (2.11) that the equation (1.2) is
of the form (2.2), where a2(z) ≡ 0 and aj(z)(j = 0, 1) are rational functions with
a0(z) ̸≡ 0.
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We now devote to a complete proof of Theorem 2.1.
Proof of Theorem 2.1. We firstly discuss the case a(z) ≡ 0. We deduce from
(1.2) and Lemma 2.1 that

T

(
r,
P (z, w(z))

Q(z, w(z))

)
= T (r, w(z + 1)− w(z − 1)) = m(r, w(z + 1)− w(z − 1))

≤ m(r, w(z)) +m

(
r,
w(z + 1)

w(z)

)
+m

(
r,
w(z − 1)

w(z)

)
+O(1)

= m(r, w(z)) + S(r, w). (2.12)

Lemma 2.4 and (2.12) yield that max{degw(P ),degw(Q)} ≤ 1. Thus, the equa-
tion (1.2) has the form

w(z + 1)− w(z − 1) =
ã1(z)w(z) + ã0(z)

b̃1(z)w(z) + b̃0(z)
, (2.13)

where ãj(z) and b̃j(z)(j = 0, 1) are rational functions. We affirm that b̃1(z) ≡ 0.
Otherwise, if b̃1(z) ̸≡ 0, we deduce from Lemma 2.4 and (2.13) that

T (r, w(z + 1)− w(z − 1)) = T

(
r,
ã1(z)w(z) + ã0(z)

b̃1(z)w(z) + b̃0(z)

)
= T (r, w(z)) + S(r, w).

(2.14)

On the other hand, we get from (2.13) that

w(z)(w(z + 1)− w(z − 1)) = − b̃0(z)
b̃1(z)

(w(z + 1)− w(z − 1)) +
ã1(z)

b̃1(z)
w(z) +

ã0(z)

b̃1(z)
.

(2.15)

Applying Lemma 2.2 to (2.15), we obtain

T (r, w(z + 1)− w(z − 1)) = m(r, w(z + 1)− w(z − 1)) = S(r, w).

This contradicts (2.14). So b̃1(z) ≡ 0 and (1.2) is of the form (2.1), where aj(z)(j =
0, 1) are rational functions.

We secondly discuss the case a(z) ̸≡ 0. We deduce from (1.2) and Lemmas 2.1
and 2.4 that

max{degw(P ),degw(Q)}T (r, w(z)) +O(log r)

=T

(
r,
P (z, w(z))

Q(z, w(z))

)
=T

(
r, w(z + 1)− w(z − 1) + a(z)

w′(z)

w(z)

)
≤2T (r, w(z)) + S(r, w).

So max{degw(P ),degw(Q)} ≤ 2, and

P (z, w(z))

Q(z, w(z))
=
ã2(z)w(z)

2 + ã1(z)w(z) + ã0(z)

b̃2(z)w(z)2 + b̃1(z)w(z) + b̃0(z)
, (2.16)
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where ãj(z) and b̃j(z)(j = 0, 1, 2) are rational functions.
If w(z) has finitely many zeros, then Lemma 2.5 shows that the equation (1.2) is

of the form (2.1). If there exists a rational function r(z) ̸≡ 0 such that w(z) + r(z)
has finitely many zeros, then lemma 2.6 shows that the equation (1.2) is of the form
(2.2).

Thus, we assume that w(z) has infinitely many zeros and w(z) + r(z) also has
infinitely many zeros for any rational function r(z) ̸≡ 0.

Suppose that z0 is a zero of w(z) and that neither a(z) nor any of the coefficients
in P (z,w(z))

Q(z,w(z)) has a zero or a pole at z0. If b̃0(z) ̸≡ 0, then z0 is a simple pole of
w(z + 1)− w(z − 1) + a(z)w

′(z)
w(z) and a finite value of P (z,w(z))

Q(z,w(z)) , a contradiction. So
b̃0(z) ≡ 0.

If b̃2(z) ̸≡ 0 and b̃1(z) ≡ 0, then we deduce from (1.2) and (2.16) that

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
=
ã2(z)w(z)

2 + ã1(z)w(z) + ã0(z)

b̃2(z)w(z)2
. (2.17)

Since the right hand side of (2.17) is irreducible in w(z), we see that ã0(z) ̸≡ 0.
Choose a zero z0 of w(z) as above. Then we see that z0 is a simple pole of the
left hand side of (2.17) and a multiple pole of the right hand side of (2.17), a
contradiction.

If b̃2(z) ̸≡ 0 and b̃1(z) ̸≡ 0, then we conclude from (1.2) and (2.16) that

w(z + 1)w(z)− w(z − 1)w(z) + a(z)w′(z) =

ã2(z)

b̃2(z)
w(z)2 + ã1(z)

b̃2(z)
w(z) + ã0(z)

b̃2(z)

w(z) + b̃1(z)

b̃2(z)

.

(2.18)

Since the right hand side of (2.18) is irreducible in w(z), we see that ã2(z)

b̃2(z)
w(z)2 +

ã1(z)

b̃2(z)
w(z) + ã0(z)

b̃2(z)
and w(z) + b̃1(z)

b̃2(z)
have at most finitely many common zeros. Fur-

thermore, w(z) + b̃1(z)

b̃2(z)
has infinitely many zeros. So we can choose a zero z1 of

w(z) + b̃1(z)

b̃2(z)
such that neither a(z) nor ã2(z)

b̃2(z)
w(z)2 + ã1(z)

b̃2(z)
w(z) + ã0(z)

b̃2(z)
has a zero or

a pole at z1. So z1 is a pole of the right hand side of (2.18) and a finite value of the
left hand side of (2.18), a contradiction.

From the above discussion, we see that b̃0(z) ≡ 0 and b̃2(z) ≡ 0. So (1.2) is of
the form (2.2), where aj(z)(j = 0, 1, 2) are rational functions with a0(z) ̸≡ 0.

3. Value distribution and forms of entire solution
for reduced delay differential equations

In this section, we emphasize the growth order and value distribution of transcen-
dental entire solutions for the reduced forms (2.1) and (2.2). The forms of entire
solutions for the reduced forms (2.1) and (2.2) are also presented. We first give our
results as follows.

Theorem 3.1. Let a(z), a0(z) and a1(z) be rational functions with a1(z) ̸≡ 0 or
a0(z) ̸≡ 0, and let w(z) be a transcendental entire solution of the equation (2.1)
with σ2(w) < 1.
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(i) If a(z) ≡ 0, then σ(w) ≥ 1.
(ii) If a(z) ̸≡ 0, then w(z) = H(z)edz, where H(z) ̸≡ 0 is a polynomial and

d ̸= 0 is some complex number. Especially, if a1(z) is a polynomial with
a1(z) ̸≡ ±2i, then w(z) = Cedz, where C ∈ C/{0}; if a1(z) ≡ ±2i, then
w(z) = (C1z + C0)e

(2k± 1
2 )πiz, where k is an integer and C1, C0 ∈ C with

|C1|+ |C0| ̸= 0.

Theorem 3.2. Let a(z), a2(z), a1(z) and a0(z) ̸≡ 0 be rational functions, and let
w(z) be a transcendental entire solution of the equation (2.2) with σ2(w) < 1. Then

(i) σ(w) ≥ 1;
(ii) Θ(b, w) = 0 provided that b ∈ C and a2(z)b2 + a1(z)b+ a0(z) ̸≡ 0.

It is trivial for us to get from Theorems 2.1, 3.1, 3.2 and Remark 2.1 that

Corollary 3.1. Let R(z, w(z)) ̸≡ 0 be an irreducible rational function in w(z) with
rational coefficients, let a(z) be a rational function, and let w(z) be a transcendental
entire solution of the equation (1.2) with σ2(w) < 1. Then

(i) σ(w) ≥ 1;
(ii) If degw(Q) = 0 and a(z) ̸≡ 0, then w(z) has the form w(z) = H(z)edz, where

H(z) ̸≡ 0 is a polynomial and d ̸= 0 is some complex number;
(iii) If degw(Q) > 0, then Θ(0, w) = 0.

We now give some lemmas to prove Theorems 3.1 and 3.2. Lemmas 3.1 and 3.2
are concerned with the growth order of meromorphic solutions for linear difference
equations.

Lemma 3.1 ( [3, Theorem 3]). Let Pn(z), · · · , P0(z) be polynomials such that
Pn(z)P0(z) ̸≡ 0 and satisfy Pn(z) + · · · + P0(z) ̸≡ 0. Then every transcenden-
tal meromorphic solution f(z) of the equation

Pn(z)f(z + n) + Pn−1(z)f(z + n− 1) + · · ·+ P0(z)f(z) = 0

satisfies σ(f) ≥ 1.

Lemma 3.2 ( [3, Theorem 4]). Let F (z), Pn(z), · · · , P0(z) be polynomials such that
F (z)Pn(z)P0(z) ̸≡ 0. Then every transcendental meromorphic solution f(z) of the
equation

Pn(z)f(z + n) + Pn−1(z)f(z + n− 1) + · · ·+ P0(z)f(z) = F (z)

satisfies σ(f) ≥ 1.

The following lemma is another version of difference analogue of the logarithmic
derivative lemma.

Lemma 3.3 ( [4, Corollary 2.6]). Let η1, η2 be two complex numbers such that
η1 ̸= η2 and let f(z) be a finite order meromorphic function. Let σ be the order of
f(z), then for each ε > 0, we have

m

(
r,
f(z + η1)

f(z + η2)

)
= O(rσ−1+ε).
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By a careful inspection of the proof of Theorem 2.3 in [17] and using Lemma
3.3, we easily get the following lemma, which is another version of the difference
analogue of the Clunie lemma.

Lemma 3.4. Let f(z) be a transcendental meromorphic solution of finite order σ
of a differential-difference equation of the form

f(z)nP (z, f) = Q(z, f),

where P (z, f), Q(z, f) are differential-difference polynomials in f(z) with rational
coefficients and degf (Q) ≤ n. Then for each ε > 0, we have

m
(
r, P (z, f)

)
= O(rσ−1+ε) +O(log r).

Applying Lemma 2.1 to Corollary 3.4 of [8], we easily get the following lemma,
which is a version of the difference analogue of the Mohon’ko-Mohon’ko lemma.

Lemma 3.5. Let f(z) be a transcendental meromorphic solution with σ2(f) < 1 of

P (z, f) = 0,

where P (z, f) is a differential-difference polynomial in f(z) with small meromorphic
coefficients. If P (z, a) ̸≡ 0 for a small function a(z), then

m

(
r,

1

f − a

)
= S(r, f).

We now give the proof of Theorem 3.1.

Proof of Theorem 3.1. (i) Since a(z) ≡ 0, we get from (2.1) that

w(z + 2)− a1(z + 1)w(z + 1)− w(z) = a0(z + 1).

If a0(z) ̸≡ 0, then by Lemma 3.2, we have σ(w) ≥ 1. If a0(z) ≡ 0, then a1(z) ̸≡ 0
by assumption. We also have σ(w) ≥ 1 from Lemma 3.1.

(ii) Since a(z) ̸≡ 0, we see from (2.1) that w(z) has only finitely many zeros. By
Hadamard factorization theorem, w(z) takes the form

w(z) = H(z)eg(z), (3.1)

where H(z) is a non-zero polynomial, g(z) is a non-constant entire function such
that σ2(w(z)) = σ2(e

g(z)) = σ(g(z)) < 1. Substituting (3.1) into (2.1), we get

− a1(z)H(z)eg(z) +H(z + 1)eg(z+1) −H(z − 1)eg(z−1)

=a0(z)− a(z)

(
H ′(z)

H(z)
+ g′(z)

)
.

(3.2)

Since σ(g(z)) = σ2(e
g(z)) < 1, we have lim inf

r→∞
T (r,g)
r = 0. If g(z) is a transcen-

dental entire function, we see from [24, p. 101] that g(z+1)−g(z), g(z+1)−g(z−1)
and g(z− 1)− g(z) are all transcendental entire functions. Applying Lemma 2.3 to
(3.2), we get H(z + 1) ≡ 0, a contradiction, and so g(z) must be a polynomial.
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If deg g(z) ≥ 2, then deg(g(z+1)− g(z)) = deg(g(z+1)− g(z−1)) = deg(g(z−
1) − g(z)) ≥ 1. Using Lemma 2.3 again, we also get a contradiction. Thus, this
yields deg g(z) = 1, and so w(z) has the form

w(z) = H(z)edz, (3.3)

where d ̸= 0 is some complex number.
Substituting (3.3) into (2.1), we conclude

edz(H(z+1)ed−H(z−1)e−d) = a1(z)H(z)edz+a0(z)−a(z)
(
H ′(z)

H(z)
+ d

)
. (3.4)

Applying Lemma 2.3 to (3.4), we have

H(z + 1)ed −H(z − 1)e−d = a1(z)H(z). (3.5)

If a1(z) is a polynomial, we deduce from (3.5) that a1(z) must be a constant.
Let

H(z) = cnz
n + cn−1z

n−1 + · · · , (cn ̸= 0). (3.6)

If n ≥ 2, then we deduce from (3.5) and (3.6) that
ed − e−d = a1(z),

cn−1(e
d − e−d) + ncn(e

d + e−d) = a1(z)cn−1,

cn−2(e
d − e−d) + n(n−1)

2 cn(e
d − e−d) + (n− 1)cn−1(e

d + e−d) = a1(z)cn−2,

(3.7)

which yield ed = e−d = 0. This is impossible. So n ≤ 1.
If a1(z) ̸≡ ±2i, we must have n = 0. Otherwise, if n = 1, then by (3.5) and

(3.6), we get  ed − e−d = a1(z),

ed + e−d = 0,

which yield ed = ±i and a1(z) = ±2i, contradicts a1(z) ̸≡ ±2i. So H(z) must be a
constant and w(z) has the form w(z) = Cedz, where C ̸= 0, C ∈ C.

If a1(z) ≡ ±2i, then by (3.5) and (3.6), we get

ed − e−d = ±2i.

From above, we conclude that d = (2k± 1
2 )πi and so w(z) = (C1z +C0)e

(2k± 1
2 )πiz,

where k is an integer and C1, C0 ∈ C with |C1|+ |C0| ̸= 0.
We then give the proof of Theorem 3.2.

Proof of Theorem 3.2. (i) We first affirm that a(z) ̸≡ 0. Otherwise, we deduce
from (2.2) and Lemma 2.1 that

T

(
r,
a2(z)w(z)

2 + a1(z)w(z) + a0(z)

w(z)

)
= T (r, w(z + 1)− w(z − 1))
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= m(r, w(z + 1)− w(z − 1))

≤ m(r, w(z)) + S(r, w).

We see from Lemma 2.4 that a2(z) ≡ 0, and so (2.2) can be written as

w(z)(w(z + 1)− w(z − 1)) = a1(z)w(z) + a0(z). (3.8)

By (3.8), Lemma 2.2 and Lemma 2.4, we have

T (r, w(z)) + S(r, w) = T

(
r,
a1(z)w(z) + a0(z)

w(z)

)
= T (r, w(z + 1)− w(z − 1))

= m(r, w(z + 1)− w(z − 1)) = S(r, w).

This is a contradiction, and the affirmation is proved.
Assume now that σ(w(z)) < 1, and we will deduce a contradiction. Equation

(2.2) yields

w(z)(w(z + 1)− w(z − 1)− a2(z)w(z)− a1(z)) = −a(z)w′(z) + a0(z). (3.9)

Since w(z) is transcendental and a(z) ̸≡ 0, we see that −a(z)w′(z) + a0(z) ̸≡ 0. So
w(z + 1)−w(z − 1)− a2(z)w(z)− a1(z) ̸≡ 0. Since w(z) is an entire function, and
a1(z), a2(z) are rational functions, we have

N(r, w(z + 1)− w(z − 1)− a2(z)w(z)− a1(z)) = O(log r).

Applying Lemma 3.4 to (3.9), we get

T (r, w(z + 1)− w(z − 1)− a2(z)w(z)− a1(z))

=m(r, w(z + 1)− w(z − 1)− a2(z)w(z)− a1(z))

+N(r, w(z + 1)− w(z − 1)− a2(z)w(z)− a1(z)) = O(log r).

(3.10)

Rewrite (3.9) as

−w(z + 1)− w(z − 1)− a2(z)w(z)− a1(z)

a(z)
=
w′(z)

w(z)
− a0(z)

a(z)w(z)
. (3.11)

Since a(z) is rational, we see from (3.10) that −w(z+1)−w(z−1)−a2(z)w(z)−a1(z)
a(z) (̸≡

0) is also rational. Thus,

−w(z + 1)− w(z − 1)− a2(z)w(z)− a1(z)

a(z)
= Azn(1 + o(1)), (3.12)

where z → ∞, A ̸= 0 is a constant and n is an integer.
From the Wiman-Valiron theory (see [13, pp.28-32], [16, p.51] or [22, pp.103-

105]), we obtain

w′(z)

w(z)
=
ν(r)

z
(1 + o(1)), (3.13)

where |z| = r ̸∈ [0, 1]
⋃
E,E ⊂ (1,∞) is of finite logarithmic measure such that

|w(z)| =M(r, w) and ν(r) denotes the central index of w(z).
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Substituting (3.12) and (3.13) into (3.11), we conclude

Azn+1(1 + o(1)) = ν(r)(1 + o(1))− za0(z)

a(z)w(z)
, (3.14)

where |z| = r ̸∈ [0, 1]
⋃
E such that |w(z)| =M(r, w). Since w(z) is transcendental,

we have

|za0(z)|
|a(z)|M(r, w)

→ 0, (r → ∞). (3.15)

Thus, (3.14) and (3.15) yield

ν(r) = |A|rn+1(1 + o(1)), (r ̸∈ [0, 1]
⋃
E, r → ∞).

This shows that σ(w(z)) = lim sup
r→∞

log ν(r)
log r = n + 1 ≤ 0, a contradiction. Thus,

σ(w(z)) ≥ 1.
(ii) Let

P (z, w)=w(z)(w(z + 1)−w(z − 1))+a(z)w′(z)−a2(z)w(z)2−a1(z)w(z)−a0(z).

Obviously, P (z, b) = −a2(z)b2 − a1(z)b − a0(z) ̸≡ 0. By applying lemma 3.5, we
have

m

(
r,

1

w(z)− b

)
= S(r, w),

and then

N

(
r,

1

w(z)− b

)
= T (r, w(z)) + S(r, w). (3.16)

First, we suppose that b = 0. Equation (2.2) shows that w(z) has at most finitely
many multiple zeros. Thus, we get from (3.16) that Θ(0, w(z)) = 0.

Second, we suppose that b ̸= 0. Let g(z) = w(z) − b, then g(z) has infinitely
many zeros. Substituting w(z) = g(z) + b into (2.2), we obtain

g(z)(g(z + 1)− g(z − 1)) + b(g(z + 1)− g(z − 1)) + a(z)g′(z)

=a2(z)g(z)
2 + 2ba2(z)g(z) + a1(z)g(z) + ψ(z),

(3.17)

where ψ(z) = a2(z)b
2+a1(z)b+a0(z). Now we divide our discussion into two cases.

Case 1. g(z + 1)− g(z − 1)− a2(z)g(z) ̸≡ 0.
Rewriting (3.17) as

g(z)(g(z + 1)− g(z − 1)− a2(z)g(z))

=− a(z)g′(z)− b(g(z + 1)− g(z − 1)) + 2ba2(z)g(z) + a1(z)g(z) + ψ(z).
(3.18)

Applying Lemma 2.2 to (3.18), we have

T (r, g(z + 1)− g(z − 1)− a2(z)g(z))

=m(r, g(z + 1)− g(z − 1)− a2(z)g(z)) +O(log r) = S(r, g).
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If g(z + 1)− g(z − 1)− a2(z)g(z) ≡ ψ(z)
b , then by (3.17), we get

g(z)(g(z + 1)− g(z − 1)) + a(z)g′(z) = a2(z)g(z)
2 + ba2(z)g(z) + a1(z)g(z).

Comparing the orders of zeros of both sides of the above equality, we have a
contradiction. So g(z + 1)− g(z − 1)− a2(z)g(z) ̸≡ ψ(z)

b and

N

(
r,

1

g(z + 1)− g(z − 1)− a2(z)g(z)− ψ(z)
b

)
= S(r, g). (3.19)

We denote by N1

(
r, 1
g(z)

)
the counting function of those simple zeros of g(z) in

|z| < r, and denote by N>1

(
r, 1
g(z)

)
the counting function of those multiple zeros

of g(z) in |z| < r. If z0 is a multiple zero of g(z) and that none of the coefficients
in (3.17) has a zero or a pole at z0, then by (3.17), we have

b(g(z0 + 1)− g(z0 − 1)) = ψ(z0),

and so
g(z0 + 1)− g(z0 − 1)− a2(z0)g(z0)−

ψ(z0)

b
= 0. (3.20)

We get from (3.19) and (3.20) that

N

(
r,

1

g(z)

)
= N1

(
r,

1

g(z)

)
+N>1

(
r,

1

g(z)

)
≤N1

(
r,

1

g(z)

)
+N

(
r,

1

g(z + 1)− g(z − 1)− a2(z)g(z)− ψ(z)
b

)
+O(log r)

≤N
(
r,

1

g(z)

)
+ S(r, g),

which gives Θ(b, w(z)) = Θ(0, g(z)) = 0.
Case 2. g(z + 1)− g(z − 1)− a2(z)g(z) ≡ 0.
Substituting b(g(z + 1)− g(z − 1)) = ba2(z)g(z) into (3.17), we have

g(z)(g(z + 1)−g(z−1))+a(z)g′(z)=a2(z)g(z)
2+ba2(z)g(z)+a1(z)g(z)+ψ(z).

Since ψ(z) ̸≡ 0, we see from the above equality that g(z) has at most finitely many
multiple zeros. So Θ(b, w(z)) = Θ(0, g(z)) = 0.

4. Existence of entire solutions of the Kac-van Mo-
erbeke delay differential equation

In section 2, we show that some reductions of integrable differential-difference equa-
tion (1.2) are known to reduce into delay differential equation (2.1). If a1(z) ≡ 0,
then equation (2.1) becomes

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= a0(z), (4.1)
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where a(z), a0(z) are rational. The equation (4.1) can be seen as Kac-van Moerbeke
delay equation, which is also the similarity reductions of Kac-van Moerbeke delay
partial differential difference equation.

Quispel, Capel and Sahadevan [19] showed that equation (4.1) has a formal
continuum limit to the first Painlevé equation

d2y

dt2
= 6y2 + t,

if a(z), a0(z) are constants. They also showed that equation (4.1) is unusual, which
makes its integration difficult. Hence, they restrict themselves to exhibiting two
particular solutions for the cases a(z) ≡ a and a0(z) = 0 as follows.

(i) Soliton solution

w(z) =
aκ(1 + eκ(z+1)+δ)(1 + eκ(z−2)+δ)

(e−κ − eκ)(1 + eκz+δ)(1 + eκ(z−1)+δ)
,

where κ and δ are arbitrary parameters.
(ii) Rational solution

w(z) = −a(z + 1 + δ)(z − 2 + δ)

2(z + δ)(z − 1 + δ)
,

where δ is an arbitrary parameter.
After that, Halburd and Korhonen [11] indicated that if a0(z) ≡ pπia(z), where

p ∈ N, then w(z) = C exp(pπiz), C ̸= 0, is a one-parameter family of zero-free
entire transcendental finite-order solution of (4.1) for any rational function a(z).
This shows that (4.1) has transcendental entire solutions with finite order.

Question 3. Dose the equation (4.1) have entire solutions of infinite order?
For a meromorphic function w of infinite order, we use the notation of iterated

order (see, e.g. [2]) to express its rate of growth. The iterated i-order of w is defined
by

σi(w) = lim sup
r→∞

logi T (r, w)

log r
, (i = 2, 3, 4, · · · ).

Obviously, the iterated 2-order of w is the hyper-order of w.
In general, it is difficult to study the existence of meromorphic or entire solutions

with σ2(w) ≥ 1 of equations involving shifts. Here, we answer the above Question
3 and show that equation (4.1) has no entire solutions with finite iterated order.

Theorem 4.1. Let a(z) and a0(z) be rational functions such that a(z) ̸≡ 0. Then
the equation (4.1) has no entire solutions with finite iterated order.

We first prepare one lemma which relates to the estimate of characteristic func-
tion of shifts of a meromorphic function.

Lemma 4.1 ( [1,5]). Let f(z) be a meromorphic function. For an arbitrary c ̸= 0,
the following inequalities(

1 + o(1)
)
T
(
r − |c|, f(z)

)
≤ T

(
r, f(z + c)

)
≤
(
1 + o(1)

)
T
(
r + |c|, f(z)

)
hold as r → ∞.



Delay differential equations 1737

We second give a complete proof of Theorem 4.1.
Proof of Theorem 4.1. Suppose that w(z) is an entire solution of (4.1) with
finite iterated order. Then there exists an integer p ≥ 1 such that σp(w) = ∞ and
σp+1(w) <∞. We get from (4.1) that

a0(z)− a(z)
w′(z)

w(z)
= w(z + 1)− w(z − 1). (4.2)

By applying Hadamard factorization theorem, we see that w(z) takes the form

w(z) = H(z)eg(z), (4.3)

where H(z) is a non-zero polynomial and g(z) is a transcendental entire function
such that σp(w(z)) = σp(e

g(z)) = ∞ and σp+1(w(z)) = σp(g(z)) <∞.
If w(z + 1)− w(z − 1) ≡ 0, then (4.2) and (4.3) give

a0(z)

a(z)
− H ′(z)

H(z)
= g′(z),

a contradiction. So w(z+1)−w(z−1) ̸≡ 0. Substituting (4.3) into (4.2) and letting

F = a0(z)− a(z)

(
H ′(z)

H(z)
+ g′(z)

)
, (4.4)

we get

F = H(z + 1)eg(z+1) −H(z − 1)eg(z−1) (4.5)

and

F ′ =(H ′(z + 1) +H(z + 1)g′(z + 1))eg(z+1)

− (H ′(z − 1) +H(z − 1)g′(z − 1))eg(z−1).
(4.6)

Set  H̃1(z) = H(z + 1)(H ′(z − 1) +H(z − 1)g′(z − 1)),

H̃2(z) = H(z − 1)(H ′(z + 1) +H(z + 1)g′(z + 1)).

If H̃1(z) ̸≡ H̃2(z), then by (4.5) and (4.6), we obtain

eg(z−1) =
(H ′(z + 1) +H(z + 1)g′(z + 1))F −H(z + 1)F ′

H̃1(z)− H̃2(z)
. (4.7)

By Lemma 4.1, we have σp(eg(z−1)) = σp(e
g(z)) = ∞, but the iterated p-order of

the right hand side of (4.7) is no more than σp(g(z)) <∞. This is a contradiction.
If H(z+1)(H ′(z−1)+H(z−1)g′(z−1)) ≡ H(z−1)(H ′(z+1)+H(z+1)g′(z+1)),

then by (4.6), we get

H(z+1)F ′=(H ′(z+1)+H(z + 1)g′(z+1))(H(z + 1)eg(z+1)−H(z−1)eg(z−1)).
(4.8)



1738 R. Zhang & Z. Huang

Obviously, H ′(z + 1) +H(z + 1)g′(z + 1) ̸≡ 0. By (4.5) and (4.8), we obtian

F ′

F
=
H ′(z + 1)

H(z + 1)
+ g′(z + 1).

So F = CH(z + 1)eg(z+1), where C is a non-zero constant. By (4.4), we get

CH(z + 1)eg(z+1) = a0(z)− a(z)

(
H ′(z)

H(z)
+ g′(z)

)
. (4.9)

Comparing the iterated p-order of both sides of (4.9), we again get a contradiction.
Thus, the equation (4.1) has no entire solutions with finite iterated order.

5. Examples
In this section, we give some examples to show that our results are possible. The
following examples 5.1 and 5.2 show that the form (2.1) in Theorem 2.1 does exist.

Example 5.1. The equation

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
=
e(z + 1)− e−1(z − 1)

z
w(z) + a(z)

1 + z

z

has an entire solution w(z) = zez, where a(z) is any rational function.

Example 5.2. The equation

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
= 2πia(z)

has an entire solution w(z) = e2πiz, where a(z) is any rational function.

Examples 5.3−5.5 below show that the form (2.2) in Theorem 2.1 are valid.

Example 5.3. The equation

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)

=
(e− e−1)w(z)2 + (−z(e− e−1) + 2 + a(z))w(z) + a(z)(1− z)

w(z)

has an entire solution w(z) = ez + z, where a(z) is any rational function.

Example 5.4. The equation

w(z + 1)− w(z − 1) + a(z)
w′(z)

w(z)
=

2πia(z)w(z)− 2πia(z)

w(z)

has an entire solution w(z) = e2πiz + 1, where a(z) is any rational function.

Example 5.5. The equation

w(z + 1)− w(z − 1)− 1

πi

w′(z)

w(z)
=

2z − 1
πi

w(z)

has an entire solution w(z) = e2πiz + z.
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