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ABSTRACT: In this paper, we study the shared-value problem of forward differences ∆2
c f (z) and ∆c f (z) of a

meromorphic function f (z). For an entire function f (z) with a Borel exceptional small function, we give the specific
expression of f (z) when ∆2

c f (z) and ∆c f (z) share a small function CM. For a meromorphic function f (z) with a small
deficient function, we obtain the relationship of ∆2

c f (z) and ∆c f (z) when they share a small function and∞ CM.
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INTRODUCTION AND RESULTS

In this paper, we shall use the standard notations
of Nevanlinna’s value distribution theory such as
T (r, f ), m(r, f ), N(r, f ) and S(r, f ) [1–3]. In addi-
tion, We use the notation S( f ) to denote the set of
small functions of f (z).

Uniqueness theory of meromorphic functions
is an important part of complex analysis. As for
the standard notations, let f (z) and g(z) be two
non-constant meromorphic functions, and let a(z)∈
S( f )∩ S(g). We say that f (z) and g(z) share a(z)
CM (IM), if f − a and g − a have the same zeros
counting multiplicities (ignoring multiplicities). We
say that f (z) and g(z) share the value∞ CM (IM),
if f and g have the same poles counting multiplic-
ities (ignoring multiplicities). The classical results
in the uniqueness theory are five-point, respectively,
four-point, theorems [4–7].

An active subject in the uniqueness theory is the
investigation on the uniqueness of the meromorphic
function sharing values with its derivatives, which
was initiated by Rubel et al [8]. We first recall the
following result by Jank et al [9].

Theorem 1 ([9]) Let f (z) be a nonconstant mero-
morphic function, and let a 6= 0 be a finite constant.
If f (z), f ′(z) and f ′′(z) share the value a CM, then

f (z)≡ f ′(z).

Recently, difference analogues of meromorphic
functions have become an interest subject, and
many results were expeditiously obtained [10–14].
In particular, some authors considered the unique-
ness of meromorphic functions sharing small func-
tions with their difference operators. The differ-
ence operators are defined by ∆c f (z) = f (z + c)−
f (z) and ∆k

c f (z) = ∆c(∆k−1
c f (z)), k ∈ N, k ¾ 2.

Chen et al [15] considered the difference analogue
of Theorem 1, and obtained the following result.

Theorem 2 ([15]) Let f (z) be a nonconstant entire
function of finite order, and let a(z) 6≡ 0 ∈ S( f ) be a
periodic entire function with period c. If f (z),∆c f (z)
and ∆2

c f (z) share a(z) CM, then ∆2
c f (z)≡∆c f (z).

In [15], the authors gave the following example
to show that the conclusion of Theorem 2 can occur.

Example 1 Let f (z) = ez ln2 and c = 1. Then, for
any a ∈ C, we notice that f (z), ∆c f (z) and ∆2

c f (z)
share a CM and we can easily see that ∆2

c f (z) ≡
∆c f (z).

In fact, Example 1 implies that ∆2
c f (z) ≡

∆c f (z)≡ f (z). Farissi et al [16] further studied the
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above problem and found that the claim ∆2
c f (z) ≡

∆c f (z) in Theorem 2 can be replaced by ∆c f (z) ≡
f (z). They obtained the following theorem.

Theorem 3 ([16]) Let f (z) be a nonconstant entire
function of finite order, and let a(z) 6≡ 0 ∈ S( f ) be a
periodic entire function with period c. If f (z),∆c f (z)
and ∆2

c f (z) share a(z) CM, then ∆c f (z)≡ f (z).

Example 2 Let f (z) = ez ln 2 + 1 and c = 1. By cal-
culation, we see that ∆c f (z) = ez ln2 and ∆2

c f (z) =
ez ln2 share every finite value b CM and can easily see
that ∆2

c f (z)≡∆c f (z), but cannot obtain ∆2
c f (z)≡

∆c f (z)≡ f (z).

From Example 2, we find that f (z) does not
satisfy the condition “ f (z), ∆c f (z) and ∆2

c f (z)
share a(z) CM”, but we still have the conclusion
“∆2

c f (z) ≡ ∆c f (z)”. We also find that the con-
dition “ f (z), ∆c f (z) and ∆2

c f (z) share a(z) CM”
is relatively strong. Noting that the conclusion of
Theorem 2 is “∆2

c f (z) ≡ ∆c f (z)”, which does not
involve f (z), we pose the following questions.

Question 1. What will happen if we replace the
condition “ f (z), ∆c f (z) and ∆2

c f (z) share a(z)
CM” by “∆c f (z) and ∆2

c f (z) share a(z) CM” in
Theorem 2?

Question 2. Can we get rid of the condition
“a(z)(6≡ 0) is a periodic entire function with period
c” and only retain “a(z) is an entire function” in
Theorem 2 and Theorem 3?

In fact, we find that the entire functions in
Example 1 and Example 2 both have a finite Borel
exceptional value. Hence, we answer the above
questions partly from the point of view of Borel
exceptional values. In fact, we prove the following
theorem and give the precise expression of f (z),
which is more profound than the conclusion in
Theorem 2 and Theorem 3. The method we used
is completely different from that used in Theorem 2
and Theorem 3, and basically comes from [10].

In the following, the notations ρ( f ) and ρ2( f )
are used to denote the order and the hyper-order
of a meromorphic function f (z), respectively. The
notation λ( f ) is used to denote the exponent of
convergence of the zeros of f (z). The deficiency of
a(z) ∈ S( f ) is defined by

δ(a, f ) = 1− lim
r→∞

N(r, 1
f −a )

T (r, f )
.

If δ(a, f ) > 0, then a(z) is called a small deficient
function of f (z).

We now answer the above questions and obtain:

Theorem 4 Let f (z) be a finite order transcen-
dental entire function such that λ( f − a) < σ( f ),
where a(z) (∈ S( f )) is an entire function and sat-
isfies ρ(a) < 1, let c (∈ C) be a constant such that
∆2

c f (z) 6≡ 0. If ∆2
c f (z) and ∆c f (z) share the entire

function b(z) (∈ S( f )) CM, where b(z) 6≡∆ca(z) and
ρ(b)< 1, then

f (z) = a(z)+ B eAz ,

where A and B are two nonzero constants.

Remark 1 We see that Example 2 satisfies Theo-
rem 4.

Noting that if a(z) is a constant, then ∆ca(z) =
0. So by Theorem 4, we get the following corollary.

Corollary 1 Let f (z) be a finite order transcendental
entire function with a finite Borel exceptional value a,
and let c (∈C) be a constant such that∆2

c f (z) 6≡ 0. If
∆2

c f (z) and ∆c f (z) share a finite value b(6= 0) CM,
then

f (z) = a+ B eAz ,

where A, B are two nonzero constants.

Remark 2 The conclusion of Corollary 1 implies
that ∆2

c f (z) ≡ ∆c f (z) (≡ B eAz) provided Ac = ln 2.
But generally, we cannot get f (z) = a+ B eAz from
∆2

c f (z) ≡∆c f (z). So the conclusion of Corollary 1
is more specific than the conclusion of Theorem 2.

The condition “ f (z) is a finite order transcen-
dental entire function with λ( f − a) < σ( f )” in
Theorem 4 implies δ(a, f ) = 1. A natural question
is: What can be said if we relax the restriction? For
example, replace δ(a, f ) = 1 with δ(a, f )> 0, or let
f (z) be a transcendental meromorphic function, or
let the order of f (z) be infinite. Next, we consider
this question and obtain the following theorem.

Theorem 5 Let f (z) be a transcendental meromor-
phic function with ρ2( f ) < 1, and let b(z), a(z) ∈
S( f ) such that b(z) 6≡ a(z), b(z) 6≡∆i

ca(z) (i = 1, 2)
and max{ρ(b),ρ(a)} < 1. If ∆2

c f (z) and ∆c f (z)
share b(z),∞ CM and δ(a, f )> 0, then

∆2
c f (z)− b(z)

∆c f (z)− b(z)
= D

for some nonzero constant D. In particular, if the
deficient function a(z)≡ 0, then ∆2

c f (z)≡∆c f (z).
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LEMMAS

Lemma 1 ([14]) Let f be a transcendental mero-
morphic solution of finite order ρ of a difference
equation of the form

W (z, f )P(z, f ) =Q(z, f ),

where W (z, f ), P(z, f ), Q(z, f ) are difference polyno-
mials with small meromorphic coefficients, the degrees
deg W (z, f ) = n, and degQ(z, f ) ¶ n. Moreover,
we assume that W (z, f ) contains just one term of
maximal total degree in f (z) and its shifts. Then, for
each ε > 0,

m (r, P(z, f )) = O(rρ−1+ε)+ S(r, f ),

possibly outside of an exceptional set of finite logarith-
mic measure.

Lemma 2 ([18]) Let Pn(z), . . . , P0(z) be polynomi-
als such that PnP0 6≡ 0 and satisfy

Pn(z)+ · · ·+ P0(z) 6≡ 0. (1)

Then every finite order transcendental meromorphic
solution g(z)( 6≡ 0) of the equation

Pn(z)g(z+ n)+ · · ·+ P0(z)g(z) = 0 (2)

satisfies ρ(g) ¾ 1, and g(z) assumes every nonzero
value a ∈ C infinitely often and λ(g − a) = ρ(g).

Remark 3 It is easy to show that if g(z + i)(i =
0,1, . . . , n) is replaced by g(z + ic)(i = 0, 1, . . . , n),
where c 6= 0, the conclusion in Lemma 2 is still valid.

Lemma 3 ([19]) Let g be a function transcendental
and meromorphic in the plane of order< 1. Let h> 0.
Then there exists an ε-set E such that

g(z+c)−g(z) = cg ′(z)(1+o(1)) as z→∞ in C\E,

uniformly in c for |c|¶ h.

Lemma 4 Suppose that n is a positive integer, f (z)
is a finite order transcendental entire function such
that λ( f −a)<ρ( f ), where a(z) (∈ S( f )) is an entire
function and satisfiesρ(a)< 1. If∆2

c f (z) 6≡ 0 (c ∈C)
and

∆2
c f (z)− b(z)

∆c f (z)− b(z)
= D, (3)

where D is a nonzero constant and b(z) (6≡∆a(z)) is
an entire function with ρ(b)< 1, then

f (z) = a(z)+ B eAz and D =
∆2

c a(z)− b(z)

∆ca(z)− b(z)
,

where A and B are two nonzero constants.

Proof : By the assumptions and Hadamard’s factor-
ization theory, f (z) can be written as

f (z) = a(z)+ B(z)eh(z), (4)

where B(z)(6≡ 0) is an entire function, h(z) is a
polynomial of degree deg h(z) = k (k ¾ 1), B(z) and
a(z) satisfy

λ(B) = ρ(B) = λ( f − a) = ρ1 < ρ( f ) = deg h. (5)

Substituting (4) into (3), we can conclude that

B(z+2c)eh(z+2c)−2B(z+c)eh(z+c)+B(z)eh(z)+u2(z)
B(z+ c)eh(z+c)− B(z)eh(z)+u1(z)

= D, (6)

where u2(z) =∆2
c a(z)−b(z), u1(z) =∆ca(z)−b(z).

It is easy to see that, for j = 1, 2,

ρ(u j(z))¶max{ρ(∆ j
ca(z)), ρ(b(z))}< 1. (7)

We rewrite (6) in the form

B(z+2c)eh(z+2c)−h(z)− (2+ D)B(z+ c)eh(z+c)−h(z)

+(1+ D)B(z) = [Du1(z)−u2(z)]e
−h(z). (8)

Firstly, we observe that Du1(z)− u2(z) ≡ 0. On the
contrary, if Du1(z)− u2(z) 6≡ 0, then (7) gives that
ρ(Du1(z)−u2(z))< 1¶ k. From ρ(B)< deg h(z) =
k and deg(h(z + jc) − h(z)) = k − 1 ( j = 1,2), a
contradiction is derived by comparing the orders of
both sides of (8). So Du1(z)−u2(z)≡ 0, that is

D =
u2(z)
u1(z)

=
∆2

c a(z)− b(z)

∆ca(z)− b(z)
. (9)

Thus, (8) can be written as

B(z+2c)eh(z+2c)−h(z)− (2+ D)B(z+ c)eh(z+c)−h(z)

+(1+ D)B(z) = 0. (10)

Secondly, we prove that ρ( f ) = deg h = 1. Indeed,
if ρ( f ) = k¾ 2, we will deduce a contradiction from
the following two cases.

Case 1. Suppose that D = −1. Then (10) gives

eh(z+2c)−h(z+c) =
B(z+ c)

B(z+2c)
. (11)

So R1(z) := B(z+c)
B(z+2c) is a nonconstant entire func-

tion. By a version of the difference analogue of
the logarithmic derivative lemma in [11], for each
ε1(0< 4ε1 < k−ρ1), we have

T (r, R1(z)) = m(r, R1(z)) = O(rρ1−1+ε1),
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which gives ρ(R1(z))¶ ρ1−1+ε1 < k−1. We get a
contradiction by comparing the orders of both sides
of (11).

Case 2. Suppose that D 6= −1. Then we deduce
from (10) that

W2(z, R2(z)) ·R2(z) = −(1+ D), (12)

where

R2(z) = eh(z+c)−h(z),

W2(z, R2(z)) =
B(z+2c)

B(z)
R2(z+c)− (2+D)

B(z+c)
B(z)

.

Since R2(z) is of regular growth, for any given
ε2 (0 < 4ε2 < k − ρ1) and all r > r0 (> 0), we
have T (r, R2(z)) > rk−1−ε2 . On the other hand, the
difference analogue of the logarithmic derivative
in [11] gives m

�

r, B(z+ jc)
B(z)

�

= O(rρ1−1+ε2) ( j = 1, 2).
So

m
�

r,
B(z+ jc)

B(z)

�

= S(r, R2) ( j = 1,2).

Although the coefficients of W2(z, R2(z)),
namely m

�

r, B(z+ jc)
B(z)

�

, satisfy m
�

r, B(z+ jc)
B(z)

�

= S(r, R2)

instead of T
�

r, B(z+ jc)
B(z)

�

= S(r, R2), we may however
apply the method of proof of Lemma 1 for (12) to
obtain

m(r, R2) = S(r, R2).

Since R2(z) is an entire function, this is impossible.
Therefore, we obtain ρ( f ) = deg h(z) = 1. To-

gether with (4) and (5), we have

f (z) = a(z)+ B(z)eAz+A0 = a(z)+ B∗(z)e
Az , (13)

where A( 6= 0), A0 are two constants and B∗(z) =
B(z)eA0 (6≡ 0) is an entire function such that

ρ(B∗) = λ(B∗) = λ( f − a)< ρ( f ) = 1.

At last, we prove that B∗(z) (6≡ 0) is a constant.
To this end, we only need to prove B′∗(z) ≡ 0.
Substituting (13) into (3) and noting (9), we obtain

e2AcB∗(z+2c)−(2+D)eAcB∗(z+c)+(1+D)B∗(z) = 0.
(14)

We assert that the sum of all coefficients of
equation (14) is equal to zero, that is,

e2Ac − (2+ D)eAc +(1+ D) = 0. (15)

If B∗(z) is a polynomial, we suppose that B∗(z) =
ckzk+ck−1zk−1+· · ·+c0 (k ¾ 0, ck 6= 0). Substituting
this into (14), we get for k ¾ 1,

ck

�

e2Ac−(2+D)eAc+(1+D)
�

zk+O(zk−1)≡ 0, (16)

or for k = 0,

c0

�

e2Ac − (2+ D)eAc +(1+ D)
�

≡ 0. (17)

We deduce from (16) (or (17)) that (15) holds.
If B∗(z) is a transcendental entire function and

e2Ac − (2 + D)eAc + (1 + D) 6= 0, then we deduce
from Lemma 2 and Remark 3 that ρ(B∗) ¾ 1, a
contradiction. So (15) always holds.

By (14) and (15), we have

eAc [B∗(z+2c)− B∗(z)]
− (2+ D) [B∗(z+ c)− B∗(z)] = 0. (18)

We see from Lemma 3 that there exist two ε-sets E∗j
such that for j = 1, 2, as z→∞ in C\E∗j ,

B∗(z+ jc)− B∗(z) = jcB′∗(z)(1+ o j(1)).

Together with (18), we obtain as z→∞ in C\E,

B′∗(z)K + B′∗(z)K · o(1) = 0, (19)

where E = E∗1 ∪ E∗2 and K = c eAc[2eAc − (2 + D)].
We can derive that K 6= 0, and so (19) implies that
B′∗(z)≡ 0. 2

Lemma 5 ([20, 21]) Suppose that n ¾ 2 and
let f1(z), . . . , fn(z) be meromorphic functions and
g1(z), . . . , gn(z) be entire functions such that
(i) Σn

j=1 f j(z)exp{g j(z)}= 0;
(ii) when 1¶ j < k¶ n, g j(z)−gk(z) is not constant;
(iii) when 1¶ j ¶ n, 1¶ h< k ¶ n,

T (r, f j) = o {T (r, exp{gh− gk})} (r→∞, r 6∈ E),

where E ⊂ (1,∞) has finite linear measure or
logarithmic measure.

Then f j(z)≡ 0, j = 1, . . . , n.

Lemma 6 ([22]) Suppose that h is a nonconstant
meromorphic function satisfying

N(r, h)+N(r, 1/h) = S(r, h).

Let f = a0hp + a1hp−1 + · · · + ap and g = b0hq +
b1hq−1+ · · ·+ bq be polynomials in h with coefficients
a0, a1, . . . , ap, b0, b1, . . . , bq, being small functions
of h and a0 b0ap 6≡ 0. If q ¶ p, then m(r, g/ f ) =
S(r, h).

Lemma 7 ([19]) Let g be a transcendental function
of order less than 1, and let h be a positive constant.
Then there exists an ε−set E such that

g ′(z+ c)
g(z+ c)

→ 0,
g(z+ c)

g(z)
→ 1, as z→∞ in C\E.

uniformly in c for |c| ¶ h. Further, the set E may be
chosen so that for large |z| 6∈ E, the function g has no
zeros or poles in |ζ− z|¶ h.
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PROOF OF Theorem 4

Proof : By the hypotheses of Theorem 4, we see that
(4) and (5) still hold. Since ∆2

c f (z) and ∆c f (z)
share b(z)(6≡∆ca(z)) CM, we conclude that

∆2
c f (z)− b(z)

∆c f (z)− b(z)

=
B(z+2c)eh(z+2c)−2B(z+c)eh(z+c)+B(z)eh(z)+u2(z)

B(z+c)eh(z+c)− B(z)eh(z)+u1(z)

= eQ(z), (20)

where Q(z) is a polynomial, u j(z) = ∆ j
ca(z) −

b(z) ( j = 1, 2) and ρ(u j(z))< 1 ( j = 1,2).
Since Lemma 4 holds, in order to prove Theo-

rem 4, we only need to prove

∆2
c f (z)− b(z)

∆c f (z)− b(z)
= D, (21)

where D is a nonzero constant.
If Q(z) ≡ 0, then (21) obviously holds by (20).

So we only need to suppose that Q(z) 6≡ 0 and prove
that degQ(z) = s = 0. Set

h(z) = akzk + ak−1zk−1+ · · ·+ a0,

Q(z) = bsz
s + bs−1zs−1+ · · ·+ b0,

where k = ρ( f ) ¾ 1, ak(6= 0), ak−1, . . . , a0,
bs(6= 0), bs−1, . . . , b0 are constants. From (20),

0¶ degQ = s ¶ deg h= k.

Next we prove that neither 1 ¶ s < k nor 1 ¶ s = k
holds.

Firstly, we prove that 1¶ s < k cannot hold. By
(20), we have

B(z+2c)eh(z+2c)−h(z)−2B(z+ c)eh(z+c)−h(z)

+ B(z)−
�

B(z+ c)eh(z+c)−h(z)− B(z)
�

eQ(z)

=
�

u1(z)e
Q(z)−u2(z)

�

e−h(z).

Comparing the orders of both sides of the above
equality, we obtain a contradiction.

Secondly, we prove that 1 ¶ s = k cannot hold.
To this end, we consider the following three cases.

Case 1. bk 6= ±ak. Rewrite (20) in the form

G11(z)e
Q(z)+G12 eQ(z)−h(z)+G13 e−h(z)+G14 eh0(z) = 0,

(22)
where h0(z)≡ 0 and

G11(z) = B(z+ c)eh(z+c)−h(z)− B(z);
G12(z) = u1(z); G13(z) = −u2(z);

G14(z) = −
�

B(z+2c)eh(z+2c)−h(z)

−2B(z+ c)eh(z+c)−h(z)+ B(z)
�

.

We deduce fromρ(B)< k and deg(h(z+ jc)−h(z)) =
k−1( j = 1, 2) that

ρ(G1m(z))< k (m= 1, 2, 3, 4),
deg(Q±h) = deg(Q−h0) = deg(−h−h0) = k.

So, for m= 1, 2, 3, 4,

T (r, G1m) = o
�

T
�

r, eQ±h
��

;

T (r, G1m) = o
�

T
�

r, eQ
��

;

T (r, G1m) = o
�

T
�

r, e−h
��

.

By (22) and Lemma 5, we get G1m(z) ≡ 0, m =
1, 2, 3, 4. Thus, G12(z) = u1(z) =∆ca(z)−b(z)≡ 0,
which contradicts the assumption b(z) 6≡∆ca(z).

Case 2. bk = ak. Rewrite (20) in the form

G21(z)e
Q(z)+G22 e−h(z)+G23 eh0(z) = 0,

where h0(z)≡ 0 and

G21(z) = B(z+ c)eh(z+c)−h(z)− B(z);
G22(z) = −u2(z);

G23(z) = u1(z)e
Q(z)−h(z)−

�

B(z+2c)eh(z+2c)−h(z)

−2B(z+ c)eh(z+c)−h(z)+ B(z)
�

.

Using a proof similar to that of Case 1, we can obtain
G2m(z) ≡ 0 (m = 1, 2, 3). From G21(z) = 0, we get
B(z + c)eh(z+c) ≡ B(z)eh(z). Combining this with
f (z) = a(z) + B(z)eh(z), we have ∆c f (z) = ∆ca(z),
which implies ∆2

c f (z) = ∆2
c a(z). So by G22(z) =

−u2(z) ≡ 0, we obtain ∆2
c f (z) − b(z) = ∆2

c a(z) −
b(z) = u2(z)≡ 0, which is impossible by (20).

Case 3. bk = −ak. Rewrite (20) in the form

G31(z)e
Q(z)+G32 eQ(z)−h(z)+G33 eh0(z) = 0,

where h0(z)≡ 0 and

G31(z) = B(z+c)eh(z+c)−h(z)−B(z)−u2(z)e
−Q(z)−h(z);

G32(z) = u1(z);

G33(z) = −
�

B(z+2c)eh(z+2c)−h(z)

−2B(z+ c)eh(z+c)−h(z)+ B(z)
�

.

Using a proof similar to that of Case 1, we
can obtain G3m(z) ≡ 0 (m = 1, 2, 3). So G32(z) =
u1(z) =∆ca(z)− b(z)≡ 0, which contradicts b(z) 6≡
∆ca(z). 2

PROOF OF Theorem 5

Proof : Since ∆2
c f (z) and ∆c f (z) share b(z) and∞

CM, we have

∆2
c f (z)− b(z)

∆c f (z)− b(z)
= eP(z), (23)
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where P(z) is an entire function. By (23) we have

T (r, eP(z)) = O(T (r, f )),

and so
S(r, eP(z)) = S(r, f ).

Since T (r,∆ j
c f (z)) = O(T (r, f )), we have

S(r,∆ j
c f (z)) = S(r, f ), ( j = 1, 2).

Now we prove that P(z) is a constant.
Suppose that, on the contrary, P(z) is not
a constant. Since max{ρ(b),ρ(a)} < 1,
max{ρ(∆ j

c b(z)),ρ(∆ j
ca(z))} ¶ max{ρ(b),ρ(a)} <

1 ( j = 1, 2) and eP(z) is of regular growth with
ρ(eP)¾ 1, we have

max{T (r, b(z)), T (r, a(z))}=o
�

T (r, eP)
�

;

max{T (r,∆ j
c b(z)), T (r,∆ j

ca(z))}=o
�

T (r, eP)
�

.
(24)

From (23), we get

∆2
c ( f (z)− a(z))− eP(z)∆c( f (z)− a(z))

= b(z)−∆2
c a(z)+ (∆ca(z)− b(z))eP(z). (25)

We assert that b(z)−∆2
c a(z)+(∆ca(z)−b(z))eP(z) 6≡

0. Otherwise, we have

eP(z) =
∆2

c a(z)− b(z)

∆ca(z)− b(z)
,

which implies that

ρ(eP(z))¶max{ρ(∆2
c a), ρ(∆ca), ρ(b)}

¶max{ρ(b), ρ(a)}< 1.

This contradicts ρ(eP) ¾ 1. Hence b(z)−∆2
c a(z) +

(∆ca(z)− b(z))eP(z) 6≡ 0.
Dividing both sides of (25) by (b(z)−∆2

c a(z)+
(∆ca(z)− b(z))eP(z))( f (z)− a(z)), we obtain

∆2
c ( f (z)−a(z))
f (z)−a(z) −

∆c( f (z)−a(z))
f (z)−a(z) eP(z)

b(z)−∆2
c a(z)+(∆ca(z)−b(z))eP(z)

=
1

f (z)−a(z)
.

(26)
Since b(z)−∆ j

ca(z) 6≡ 0 ( j = 1, 2), we deduce from
Lemma 6 and (24) that

m

�

r,
1

b(z)−∆2
c a(z)+(∆ca(z)−b(z))eP(z)

�

=S(r, eP),

m

�

r,
eP(z)

b(z)−∆2
c a(z)+(∆ca(z)−b(z))eP(z)

�

=S(r, eP).

Furthermore, by a version of the difference analogue
of the logarithmic derivative in [23], we get

m

�

r,
∆ j

c( f (z)− a(z))

f (z)− a(z)

�

= S(r, f ), j = 1,2.

So, by (26), we obtain

m
�

r,
1

f (z)− a(z)

�

= S(r, eP)+ S(r, f ) = S(r, f ),

which gives δ(a, f ) = 0, contradicting δ(a, f ) >
0. Hence we have proved that P(z) is a constant.
Setting eP(z) = D, we have

∆2
c f (z)− b(z)

∆c f (z)− b(z)
= D. (27)

Next we consider the case a(z)≡ 0 and b(z) 6≡ 0. By
(27), we get

∆2
c f (z)− D∆c f (z) = (1− D)b(z).

If D 6= 1, then dividing the above equality by
(1− D)b(z) f (z), we obtain

1
(1−D)b(z)

∆2
c f (z)

f (z)
−

D
(1−D)b(z)

∆c f (z)
f (z)

=
1

f (z)
.

So by (24) and the difference analogue of the loga-
rithmic derivative in [23], we get

m
�

r,
1

f (z)

�

= S(r, f ),

which gives δ(0, f ) = 0, contradicting δ(0, f ) > 0.
Hence D = 1 and ∆2

c f (z)≡∆c f (z). 2
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