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Abstract In this paper, using the theory of linear algebra,we investigate the non-linear
difference equation of the following form in the complex plane:

f (z)n + p(z) f (z + η) = β1e
α1z + β2e

α2z + · · · + βse
αs z,

where n, s are the positive integers, p(z) �≡ 0 is a polynomial and η, β1, . . . , βs, α1,

. . . , αs are the constants with β1 . . . βsα1 . . . αs �= 0, and show that this equation just
has meromorphic solutions with hyper-order at least one when n ≥ 2+ s. Other cases
are also obtained.

Keywords Nevanlinna theory · Meromorphic solution · Entire solution · Difference
equation

Mathematics Subject Classification 30D35 · 39A10

1 Introduction and results

Considering a meromorphic function f in the complex plane C, we assume that the
reader is familiar with the basic Nevanlinna value distribution theory and its standard
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notation such as the proximity function m(r, f ), the unintegrated counting function
n(r, f ), the counting function N (r, f ), the reduced counting function N (r, f ), and the
characteristic function T (r, f ), see, e.g., [5,7,12]. We use σ( f ) to denote the order
of growth of f and λ( f ) to denote the exponent of convergence of zeros of f . The
hyper-order of f is defined by

σ2( f ) = lim
r→∞

log log T (r, f )

log r
,

the hyper-exponent of convergence of poles of f is defined by

λ2

(
1

f

)
= lim

r→∞
log log N (r, f )

log r
= lim

r→∞
log log n(r, f )

log r
,

and the deficiency in which zeros of f are counted only once is defined by

�(0, f ) = 1 − lim
r→∞

N (r, 1
f )

T (r, f )
.

We denote by S(r, f ) any real function of growth o(T (r, f )) as r → ∞ outside
of a possible exceptional set of finite logarithmic measure. A meromorphic function
α is said to be a small function of f , if T (r, α) = S(r, f ). An algebraic differen-
tial polynomial P( f ) is a polynomial in f and its derivatives, with small functions
of f as its coefficients. An algebraic difference polynomial Q( f ) is a polynomial
in f and its shifts, with small functions of f as its coefficients. And an algebraic
differential–difference polynomial R( f ) is a polynomial in f , its derivatives, its shifts
and derivatives of its shifts, with small functions of f as its coefficients.

It is an interesting and difficult question to study the solvability and existence of
entire ormeromorphic solution of non-linear differential, or difference, or differential–
difference equations in complexdomains.Manyauthors have investigated this question
by utilizing the Nevanlinna value distribution theory and its difference counterparts,
see, e.g., [1,7,9–11,13,14].

The logarithmic derivative lemma and its difference analogue play a key role in
the study of non-linear equations. The logarithmic derivative lemma is valid for all
meromorphic functions. While the difference analogue of the logarithmic derivative
lemma is valid for meromorphic functions with finite order or hyper-order less than
one (see [2,4]). So for non-linear differential equations, there is no need to restrict the
order of growth of entire (or meromorphic) solutions, see, e.g., Theorems A and B
below.For non-linear difference or differential–difference equations, only the entire (or
meromorphic) solutions with finite order or hyper-order less than one were discussed,
see, e.g., Theorems C, D and E below.

Theorem A ([11]) Let n ≥ 4 be an integer and Pd( f ) denote an algebraic differential
polynomial in f (z) of degree d ≤ n−3. If p1(z), p2(z) are two non-zero polynomials
and α1, α2 are two non-zero constants such that α1

α2
is not rational, then the equation
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f (z)n + Pd( f ) = p1(z)e
α1z + p2(z)e

α2z (1.1)

has no transcendental entire solution.

Theorem B ([14]) Let n ≥ 3 be an integer and Pd( f ) denote an algebraic differential
polynomial in f(z) of degree d ≤ n − 2. If p1(z), p2(z) are two non-zero polynomials
and α1, α2 are two non-zero constants such that α1

α2
�= ( dn )±1, 1. Then any transcen-

dental entire solution f (z) of the Eq. (1.1) satisfies that �(0, f ) = 0.

Theorem C ([13]) Let p(z), q(z) be polynomials. Then a non-linear difference equa-
tion

f (z)2 + q(z) f (z + 1) = p(z)

has no transcendental entire solution of finite order.

Theorem D ([13]) A non-linear difference equation

f (z)3 + q(z) f (z + 1) = c sin bz,

where q(z) is a non-constant polynomial and b, c ∈ C are the non-zero constants,
does not admit entire solutions of finite order. If q(z) = q is a non-zero constant, then
this equation possesses three distinct entire solutions of finite order, provided b = 3πn
and q3 = (−1)n+1 27

4 c
2 for a non-zero integer n.

Theorem E ([14]) Let n ≥ 4 be an integer and Pd( f ) denote an algebraic
differential–difference polynomial in f (z) of degree d ≤ n − 3. If p1(z), p2(z) are
two non-zero polynomials and α1, α2 are two non-zero constants with

α1
α2

�= ( dn )±1, 1,
then the Eq.(1.1) does not have any transcendental entire solution of finite order.

In Theorems A, B and E, the right-hand side of the Eq. (1.1) has only two terms.
Thus, a natural question is: What can be said if the right-hand side of (1.1) is replaced
by s(≥ 1) terms? For the Eq. (1.1), the basic idea is to eliminate eα1z and eα2z by
differentiating both sides of (1.1). When p1(z)eα1z and p2(z)eα2z are replaced by
β1eα1z, β2eα2z, . . . , βseαs z , if we wish to use the same idea, we will be faced with
complicated calculations, which will make the investigations of this problem difficult.
In this paper, by combining the Nevanlinna value distribution theory and the theory of
linear algebra, we investigate a certain type of non-linear difference equations, where
the difference polynomials take the special form p(z) f (z + η) as in Theorems C and
D. We discuss meromorphic solutions instead of entire solutions.

Theorem 1.1 Let n ≥ 2 + s be an integer, p(z) �≡ 0 be a polynomial, η be a con-
stant, β1, β2, . . . , βs be non-zero constants and α1, α2, . . . , αs be distinct non-zero
constants. Suppose that αi

α j
�= n for all i, j ∈ {1, 2, . . . , s}. And when s ≥ 5, sup-

pose further that nαk �= lk1α1 + lk2α2 + · · · + lksαs for k = 5, 6, . . . , s, where
lk1, lk2, . . . , lks ∈ {0, 1, . . . , n − 1} and lk1 + lk2 + · · · + lks = n. Then any meromor-
phic solution f (z) of the equation
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f (z)n + p(z) f (z + η) = β1e
α1z + β2e

α2z + · · · + βse
αs z (1.2)

must satisfy σ2( f ) ≥ 1.

Remark 1.1 (1) Similar to the proof of Theorem 1.1, using the Clunie lemma of dif-
ferential polynomials, we can easily show that (1.2) has no meromorphic solutions
if η = 0.

(2) Example 1.1 below shows that the condition “n ≥ 2 + s” is necessary.

Example 1.1 The difference equation

f (z)5 − 10 f (z + 10π i) = 5e
3
5 z + 5e− 3

5 z + ez + e−z

has an entire solution f (z) = e
1
5 z + e− 1

5 z .

From Theorem 1.1, we can easily get the following corollary.

Corollary 1.1 Let 1 ≤ t ≤ 4 be an integer, n ≥ 2 + t be an integer, p(z) �≡ 0 be a
polynomial, η be a constant, β1, β2, . . . , βt be non-zero constants and α1, α2, . . . , αt

be distinct non-zero constants. Suppose that αi
α j

�= n for all i, j ∈ {1, 2, . . . , t}. Then
any meromorphic solution, namely f (z) of the equation

f (z)n + p(z) f (z + η) = β1e
α1z + β2e

α2z + · · · + βt e
αt z

must satisfy σ2( f ) ≥ 1.

In Theorem 1.1, we discuss the case n ≥ 2+s. Now, a natural question is:What can be
said if n ≤ 1 + s? We investigate this problem and get Theorem 1.2 and Remark 1.3.

Theorem 1.2 Let n = 1 + s be an integer, p(z) �≡ 0 be a polynomial, η be a con-
stant, β1, β2, . . . , βs be non-zero constants and α1, α2, . . . , αs be distinct non-zero
constants. Suppose that αi

α j
�= n for all i, j ∈ {1, 2, . . . , s}. And when s ≥ 5, sup-

pose further that nαk �= lk1α1 + lk2α2 + · · · + lksαs for k = 5, 6, . . . , s, where
lk1, lk2, . . . , lks ∈ {0, 1, . . . , n − 1} and lk1 + lk2 + · · · + lks = n. Then any mero-
morphic solution f (z) with σ2( f ) < 1 of the Eq. (1.2) must be an entire function and
satisfy �(0, f ) = 0 and σ( f ) = 1.

From Theorem 1.2, we can easily get the following corollary.

Corollary 1.2 Let 1 ≤ t ≤ 4 be an integer, p(z) �≡ 0 be a polynomial, η be a constant,
β1, β2, . . . , βt be non-zero constants andα1, α2, . . . , αt be distinct non-zero constants.
Suppose that αi

α j
�= n for all i, j ∈ {1, 2, . . . , t}. Then any meromorphic solution f (z)

with σ2( f ) < 1 of the equation

f (z)t+1 + p(z) f (z + η) = β1e
α1z + β2e

α2z + · · · + βt e
αt z

must be an entire function and satisfy �(0, f ) = 0 and σ( f ) = 1.
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Example 1.2 Consider the difference equation

f (z)3 − 3 f (z + 6π i) = ez + e−z,

where n = 3, s = 2, α1 = 1 and α2 = −1. We see that this equation satisfies all
hypotheses of Theorem 1.2. A simple calculation shows that f (z) = e

z
3 + e− z

3 is a
solution of this equation and �(0, f ) = 0 and σ( f ) = 1.

Remark 1.2 Example 1.2 shows that the case �(0, f ) = 0 and σ( f ) = 1 in Theo-
rem 1.2 does exist. Example 1.3 below is one more example, where s = 6.

Example 1.3 Consider the difference equation

f (z)7 + 35 f (z + π i) = 21e3z + 21e−3z + 7e5z + 7e−5z + e7z + e−7z,

where n = 7, s = 6, α1 = 3, α2 = −3, α3 = 5, α4 = −5, α5 = 7 and α6 = −7. We
see that this equation satisfies all hypotheses of Theorem 1.2. A simple calculation
shows that f (z) = ez + e−z is a solution of this equation and �(0, f ) = 0 and
σ( f ) = 1.

Remark 1.3 The following example shows that the conclusions in Theorem 1.2 may
not hold, if n < s + 1.

Example 1.4 The difference equation

f (z)2 − f (z + π i) = ez + 2e3z + e4z

has an entire solution f (z) = e2z + ez . We see that �(0, f ) = 1
2 �= 0.

From Example 1.4, we see that f (z) = e2z + ez has infinitely many zeros and λ( f ) =
σ( f ) = 1, though �(0, f ) �= 0. In this direction, we prove the following theorem.

Theorem 1.3 Let n ≥ 2 be an integer, p(z) �≡ 0 be a polynomial, η be a con-
stant, β1, β2, . . . , βs be non-zero constants and α1, α2, . . . , αs be distinct non-zero
constants. Suppose that αi

α j
�= n for all i, j ∈ {1, 2, . . . , s}. Then any meromorphic

solution f (z) with σ2( f ) < 1 of the Eq. (1.2) must be an entire function and satisfy
λ( f ) = σ( f ) = 1.

2 Proof of Theorem 1.1

To prove Theorem 1.1, we need the following lemmas. The first of these lemmas is a
version of the difference analogue of the logarithmic derivative lemma.

Lemma 2.1 ([4]) Let f (z) be a non-constant meromorphic function and c ∈ C. If
σ2( f ) < 1 and ε > 0, then

m

(
r,

f (z + c)

f (z)

)
= o

(
T (r, f )

r1−σ2( f )−ε

)

for all r outside a set of finite logarithmic measure.
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394 R.-R. Zhang, Z.-B. Huang

Laine-Yang [8] gave a difference analogue of Clunie lemma as follows.

Lemma 2.2 ([8]) Let f (z) be a transcendental meromorphic solution of finite order
ρ of a difference equation of the form

U (z, f )P(z, f ) = Q(z, f ),

whereU (z, f ), P(z, f ), Q(z, f ) are difference polynomials such that the total degree
of U (z, f ) in f (z) and its shifts is n, and that the total degree of Q(z, f ) is at most n.
Moreover, we assume that U (z, f ) contains just one term of maximal total degree in
f (z) and its shifts. Then, for each ε > 0,

m(r, P(z, f )) = O(rρ−1+ε) + o(T (r, f )),

possibly outside an exceptional set of finite logarithmic measure.

Remark 2.1 In the proof of Lemma 2.2, Laine-Yang used a version of difference
analogue of the logarithmic derivative lemma due to Chiang-Feng [2]: Let η1, η2 be
two complex numbers such that η1 �= η2, let f (z) be a finite order meromorphic
function, and let ρ be the order of f (z), then for each ε > 0,

m

(
r,

f (z + η1)

f (z + η2)

)
= O(rρ−1+ε).

Applying Lemma 2.1, logarithmic derivative lemma and f (k)(z+δ)
f (z) = f (k)(z+δ)

f (k)(z)
f (k)(z)
f (z)

(δ ∈ C/{0}) to the proof of Lemma 2.2, we can get

m
(
r, P(z, f )

) = S(r, f )

when the hyper-order of f (z) is less than 1 and P(z, f ) and Q(z, f ) are the
differential–difference polynomials in f (z).

The following lemma is a generalization of Borel’s theorem on linear combinations
of entire functions.

Lemma 2.3 ([3, pp. 69–70] or [12, p. 82]) Suppose that f1(z), f2(z), . . . , fn(z) are
meromorphic functions and that g1(z), g2(z), . . . , gn(z) are entire functions satisfying
the following conditions.

(1)
n∑
j=1

f j (z)eg j (z) ≡ 0;

(2) g j (z) − gk(z) are not constants for 1 ≤ j < k ≤ n;
(3) for 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, f j ) = o{T (r, egh−gk )} (r → ∞, r /∈ E),

where E ⊂ (1,∞) is of finite linear measure or finite logarithmic measure.
Then f j (z) ≡ 0 ( j = 1, 2, . . . , n).
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To state the following lemma, we introduce some notation. The determinant

∣∣∣∣∣∣∣∣

1 1 · · · 1
a1 a2 · · · an
· · · · · · · · · · · · · · · · · ·
an−1
1 an−1

2 · · · an−1
n

∣∣∣∣∣∣∣∣
is called the principal Vandermondian and is denoted by Vn0. For every k =
1, 2, . . . , n − 1, the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
a1 a2 · · · an
· · · · · · · · · · · · · · · · · · · · ·
an−k−1
1 an−k−1

2 · · · an−k−1
n

an−k+1
1 an−k+1

2 · · · an−k+1
n

· · · · · · · · · · · · · · · · · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is called the secondary Vandermondian and is denoted by Vnk . For Vn0, we have

Vn0 =
∏

1≤ j<i≤n

(ai − a j ).

For the relationship of Vn0 and Vnk , we have the following lemma.

Lemma 2.4 ([6]) The elementary symmetric function Ei ≡ ∑
a1a2 . . . ai of the n

variables a1, a2, . . . , an is equal to the quotient of the secondary Vandermondian Vni
by the principal Vandermondian Vn0.

In the next lemma, the elementary row transformations consist of the following: (i)
switch two rows; (ii) multiply a row by a non-zero number; (iii) replace a row by a
multiple of another row added to it.

Lemma 2.5 Let n ≥ 2, s ≥ 1 be integers, α1, α2, . . . , αs be non-zero constants, d1,
d2, . . . , ds be constants and c1, c2, c3, c4 be rational functions. For all i = 1, 2, 3, 4,
suppose that αi are distinct non-zero constants and that nαi �= αp (p = 1, 2, . . . , s).
If

(c1e
α1z + c2e

α2z + c3e
α3z + c4e

α4z)n = d1e
α1z + d2e

α2z + · · · + dse
αs z, (2.1)

then c1 ≡ c2 ≡ c3 ≡ c4 ≡ 0.

Proof of Lemma 2.5. We deduce from (2.1) that

d1e
α1z + d2e

α2z + · · · + dse
αs z

= cn1e
nα1z + cn2e

nα2z + cn3e
nα3z + cn4e

nα4z

+
∑

(m1,m2,m3,m4)

cm1,m2,m3,m4e
(m1α1+m2α2+m3α3+m4α4)z, (2.2)
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where cm1,m2,m3,m4 are rational functions and the sum
∑

(m1,m2,m3,m4)
is carried out

such thatm j ∈ {0, 1, . . . , n−1}( j = 1, 2, 3, 4) andm1+m2+m3+m4 = n. Suppose
that there exists bi j ∈ {0, 1, . . . , n− 1}(i, j = 1, 2, 3, 4) with bi1 + bi2 + bi3 + bi4 =
n(i = 1, 2, 3, 4), such that

⎧⎪⎪⎨
⎪⎪⎩

nα1 = b11α1 + b12α2 + b13α3 + b14α4,

nα2 = b21α1 + b22α2 + b23α3 + b24α4,

nα3 = b31α1 + b32α2 + b33α3 + b34α4,

nα4 = b41α1 + b42α2 + b43α3 + b44α4.

(2.3)

(2.3) can be seen as a system of linear equations of α1, α2, α3, α4. We will deduce a
contradiction. 
�

Obviously, bi j ≥ 0(i, j = 1, 2, 3, 4). For i = 1, 2, 3, 4, if only one of bi j ( j =
1, 2, 3, 4 and j �= i) is greater than zero, we deduce a contradiction immediately. In
fact, without loss of generality, we may assume that b21 > 0 and b23 = b24 = 0.
Then by the second equation of the system (2.3), we get (n − b22)α2 = b21α1. Since
b21 + b22 = n and b21 �= 0, we get α1 = α2, a contradiction.

Now we assume that, for all i = 1, 2, 3, 4, at least two of bi j ( j = 1, 2, 3, 4 and
j �= i) are greater than zero. Then for all i = 1, 2, 3, 4, we have bi j < n−bii ( j �= i).
The system (2.3) can be written as

⎧⎪⎪⎨
⎪⎪⎩

(b11 − n)α1 + b12α2 + b13α3 + b14α4 = 0,
b21α1 + (b22 − n)α2 + b23α3 + b24α4 = 0,
b31α1 + b32α2 + (b33 − n)α3 + b34α4 = 0,
b41α1 + b42α2 + b43α3 + (b44 − n)α4 = 0.

(2.4)

Denote the coefficient matrix of the system (2.4) by

A =

⎛
⎜⎜⎝
b11 − n b12 b13 b14
b21 b22 − n b23 b24
b31 b32 b33 − n b34
b41 b42 b43 b44 − n

⎞
⎟⎟⎠ .

Next we discuss the rank of the matrix A. Adding columns 2, 3 and 4 to column 1,
and noting that bi1 + bi2 + bi3 + bi4 = n(i = 1, 2, 3, 4), we see that det(A) = 0.
Now we discuss the determinants of 3 × 3 submatrices of the matrix A. To this end,
we divide our discussion into two cases.

Case 1. b13 = b23 = b43 = 0. Noting that for all i = 1, 2, 3, 4, at least two of
bi j ( j = 1, 2, 3, 4 and j �= i) are greater than zero, we see that b12 > 0, b14 > 0,
b21 > 0, b24 > 0, b41 > 0, b42 > 0. For the 3 × 3 submatrix

A1 =
⎛
⎝ b11 − n b12 b14

b31 b32 b34
b41 b42 b44 − n

⎞
⎠
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of the matrix A, we have

det(A1) = (b11 − n)b32(b44 − n) + b12b34b41 + b14b31b42
− b14b32b41 − b12b31(b44 − n) − (b11 − n)b34b42.

Since for all i = 1, 2, 3, 4, bi j < n − bii ( j �= i), we have b14 < n − b11 and
b41 < n − b44. If b32 > 0, then b14b32b41 < (n − b11)(n − b44)b32. So

det(A1) > b12b34b41 + b14b31b42 − b12b31(b44 − n) − (b11 − n)b34b42 ≥ 0.

If b32 = 0, then b31 > 0, b34 > 0 and so

det(A1) = b12b34b41 + b14b31b42 − b12b31(b44 − n) − (b11 − n)b34b42 > 0.

Thus, we proved det(A1) > 0 in this case.
Case 2. At least one of b13, b23, b43 is greater than zero. For the 3 × 3 submatrix

A2 =
⎛
⎝ b11 − n b12 b13

b21 b22 − n b23
b41 b42 b43

⎞
⎠

of the matrix A, we have

det(A2) = (b11 − n)(b22 − n)b43 + b12b23b41 + b13b21b42
− b13(b22 − n)b41 − b12b21b43 − (b11 − n)b23b42.

If b43 > 0, then by b12 < n − b11 and b21 < n − b22, we have b12b21b43 <

(n − b11)(n − b22)b43. So

det(A2) > b12b23b41 + b13b21b42 − b13(b22 − n)b41 − (b11 − n)b23b42 ≥ 0.

If b43 = 0, then b41 > 0, b42 > 0 and at least one of b13, b23 is greater than zero.
So

det(A2) = b12b23b41 + b13b21b42 − b13(b22 − n)b41 − (b11 − n)b23b42 > 0.

Thus, we proved det(A2) > 0 in this case.
Since det(A) = 0 and there exists a 3 × 3 submatrix of matrix A with non-zero

determinant, we see that the rank of the matrix A is 3. So by elementary row transfor-
mations, we deduce that the matrix A becomes

B =

⎛
⎜⎜⎝
1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 0

⎞
⎟⎟⎠ . (2.5)
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(2.4) and (2.5) give α1 = α2 = α3 = α4, a contradiction. So (2.3) does not hold.
Without loss of generality, we may assume that

nα4 �= m1α1 + m2α2 + m3α3 + m4α4

for all m1,m2,m3,m4 ∈ {0, 1, . . . , n − 1} such that m1 +m2 +m3 +m4 = n. Since
nα4 �= αp(p = 1, 2, . . . , s) and nα4 �= nαq(q = 1, 2, 3), by (2.2) and Lemma 2.3,
we get c4 ≡ 0. So the Eq. (2.1) becomes

(c1e
α1z + c2e

α2z + c3e
α3z)n = d1e

α1z + d2e
α2z + · · · + dse

αs z .

Using a similar proof as in (2.2)–(2.5), we get c3 ≡ 0 and the equation (2.1) becomes

(c1e
α1z + c2e

α2z)n = d1e
α1z + d2e

α2z + · · · + dse
αs z . (2.6)

By (2.6), we get

d1e
α1z + d2e

α2z + · · · + dse
αs z = cn1e

nα1z + cn2e
nα2z

+
n−1∑
j=1

(
n

j

)
c j1c

n− j
2 e( jα1+(n− j)α2)z, (2.7)

where

(
n

j

)
are the binomial coefficients. Since α1 �= α2, we see that for j =

1, 2, . . . , n − 1,

nα1 �= jα1 + (n − j)α2, nα2 �= jα1 + (n − j)α2.

So by (2.7) and Lemma 2.3, we get c1 ≡ c2 ≡ 0.

Proof of Theorem 1.1. Suppose that the Eq. (1.2) has a meromorphic solution f (z)
with σ2( f ) < 1. We will deduce a contradiction for the case f (z) has at least one pole
and the case f (z) is an entire function, respectively. 
�
Case 1. f (z) has at least one pole. In this case, if η = 0, then comparing the orders
of poles of both sides of (1.2), we immediately get a contradiction. If η �= 0, then
suppose that z0 is a pole of f (z) with order q. We deduce from (1.2) that z0 + η is a
pole of f (z) with order at least nq. Substituting z0 + η for z in (1.2), we obtain

f (z0 + η)n + p(z0 + η) f (z0 + 2η) = β1e
α1(z0+η) + β2e

α2(z0+η)

+ · · · + βse
αs (z0+η). (2.8)

Since z0 + η is a pole of f (z)n with order at least n2q, we see from (2.8) that z0 + 2η
is a pole of f (z) with order at least n2q. Following the steps above, we will find a
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sequence {z0 + jη}∞j=0 of poles of f (z) with order at least n jq, respectively. So for
m = 1, 2, . . . , we have

n(m|η| + |z0| + 1, f (z)) ≥ q + nq + · · · + nmq.

Furthermore, n ≥ 2 + s ≥ 3. Thus,

λ2

(
1

f (z)

)
= lim

r→∞
log log n(r, f (z))

log r

≥ lim
m→∞

log log n(m|η| + |z0| + 1, f (z))

log(m|η| + |z0| + 1)

≥ lim
m→∞

log log nm

logm
= 1.

This contradicts σ2( f ) < 1. So the Eq. (1.2) does not have any meromorphic solution
of hyper-order less than one with at least one pole.

Case 2. f (z) is an entire function. If f (z) is a polynomial, then comparing both sides
of equation (1.2), we obtain that the order of growth of the left side is 0, while the
order of growth of the right side is 1. This is impossible. So f (z) is transcendental.
Since s ≥ 1, we divide our discussion into two subcases: s = 1 and s > 1.

Subcase 2.1. s = 1. The Eq. (1.2) becomes

f (z)n + p(z) f (z + η) = β1e
α1z . (2.9)

Differentiating both sides of (2.9), we get

n f (z)n−1 f ′(z) + (p(z) f (z + η))′ = α1β1e
α1z .

Combining this equation with (2.9), we get

f (z)n−1(n f ′(z) − α1 f (z)) = α1 p(z) f (z + η) − (p(z) f (z + η))′. (2.10)

If n f ′(z) − α1 f (z) �≡ 0, then we deduce from (2.10), n ≥ 2 + s = 3, Lemma 2.2
and Remark 2.1 that

T (r, n f ′(z) − α1 f (z)) = m(r, n f ′(z) − α1 f (z)) = S(r, f ), (2.11)

T (r, f (z)(n f ′(z) − α1 f (z))) = m(r, f (z)(n f ′(z) − α1 f (z))) = S(r, f ).

(2.12)

Combining (2.11) with (2.12), we get

T (r, f (z)) ≤ T (r, f (z)(n f ′(z) − α1 f (z))) + T

(
r,

1

n f ′(z) − α1 f (z)

)
= S(r, f ),

a contradiction.
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If n f ′(z) − α1 f (z) ≡ 0, then f (z) = ce
α1
n z , where c is a constant. Substituting

f (z) = ce
α1
n z into the Eq. (1.2), we get

cneα1z + p(z)ce
α1
n ηe

α1
n z = β1e

α1z . (2.13)

By (2.13) and Lemma 2.3, we get p(z)ce
α1
n η ≡ 0. So c = 0 and f (z) ≡ 0, a

contradiction. Therefore, we proved that the Eq. (1.2) does not have any entire solution
of hyper-order less than one when s = 1.

Subcase 2.2. s > 1. Set F = f (z)n + p(z) f (z + η). Then the equation (1.2)
becomes

F = β1e
α1z + β2e

α2z + · · · + βse
αs z . (2.14)

Differentiating both sides of the Eq. (2.14) s − 1 times, we get

F ′ = α1β1eα1z + α2β2eα2z + · · · + αsβseαs z,

F ′′ = α2
1β1eα1z + α2

2β2eα2z + · · · + α2
s βseαs z,

· · · ,

F (s−1) = αs−1
1 β1eα1z + αs−1

2 β2eα2z + · · · + αs−1
s βseαs z .

Combining these equations with (2.14) and using Cramer’s Rule, we get

β1e
α1z = D1

D
,

where

D1 =

∣∣∣∣∣∣∣∣∣∣

F 1 · · · 1
F ′ α2 · · · αs

F ′′ α2
2 · · · α2

s
· · · · · · · · · · · · · · · · · ·
F (s−1) αs−1

2 · · · αs−1
s

∣∣∣∣∣∣∣∣∣∣
,

D =

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
α1 α2 · · · αs

α2
1 α2

2 · · · α2
s

· · · · · · · · · · · · · · · · · ·
αs−1
1 αs−1

2 · · · αs−1
s

∣∣∣∣∣∣∣∣∣∣
. (2.15)

Obviously, D is a principal Vandermondian with order s. Since α1, α2, . . . , αs are
distinct constants, we get

D =
∏

1≤ j<i≤s

(αi − α j ) �= 0.
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By expanding determinant (2.15) along column 1, we get

β1e
α1z = 1

D
((−1)s+1Ms1F

(s−1)

+ · · · + (−1)s− j+1Ms− j,1F
(s− j−1) + · · · + M11F), (2.16)

where Ms− j,1( j = 0, 1, . . . , s − 1) is the determinant formed by throwing away
column 1 and row s − j from the determinant (2.15), i.e.,

Ms1 =

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
α2 α3 · · · αs

α2
2 α2

3 · · · α2
s

· · · · · · · · · · · · · · · · · ·
αs−2
2 αs−2

3 · · · αs−2
s

∣∣∣∣∣∣∣∣∣∣
, (2.17)

Ms− j,1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
α2 α3 · · · αs

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
α
s− j−2
2 α

s− j−2
3 · · · α

s− j−2
s

α
s− j
2 α

s− j
3 · · · α

s− j
s

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
αs−1
2 αs−1

3 · · · αs−1
s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, ( j = 1, · · · , s − 1). (2.18)

From (2.17) and (2.18), we see that Ms1 is the principal Vandermondian with variables
α2, α3, . . . , αs , andMs− j,1( j = 1, 2, . . . , s−1) is the secondaryVandermondianwith
variables α2, α3, . . . , αs . For j = 1, 2, . . . , s − 1, let

σ j ≡
∑

α2α3 · · ·α j+1 (2.19)

be the elementary symmetric function of s − 1 variables α2, α3, . . . , αs . By (2.17),
(2.18) and Lemma 2.4, we get

σ j = Ms− j,1

Ms1
, ( j = 1, 2, . . . , s − 1). (2.20)

Differentiating both sides of (2.16), we get

α1β1e
α1z = 1

D
((−1)s+1Ms1F

(s)

+ · · · + (−1)s− j+1Ms− j,1F
(s− j) + · · · + M11F

′). (2.21)

By eliminating eα1z from (2.16) and (2.21), we get

(−1)s+1Ms1F
(s) + ((−1)sMs−1,1 − (−1)s+1α1Ms1)F

(s−1)

+ · · · + ((−1)s− j+1Ms− j,1 − (−1)s− jα1Ms− j+1,1)F
(s− j) + · · · − α1M11F = 0.

(2.22)
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Let

L(w) = w(s) + (−1)sMs−1,1 − (−1)s+1α1Ms1

(−1)s+1Ms1
w(s−1) + · · ·

+ (−1)s− j+1Ms− j,1 − (−1)s− jα1Ms− j+1,1

(−1)s+1Ms1
w(s− j)

+ · · · − α1M11

(−1)s+1Ms1
w (2.23)

be a linear differential operator. Since F = f (z)n + p(z) f (z + η), we deduce from
(2.22) and (2.23) that

L( f (z)n) = −L(p(z) f (z + η)). (2.24)

For j = 1, 2, . . . , s, let

τ j ≡
∑

α1α2 . . . α j (2.25)

be the elementary symmetric function of s variables α1, α2, . . . , αs . We deduce from
(2.19), (2.20) and (2.25) that

(−1)sMs−1,1 − (−1)s+1α1Ms1

(−1)s+1Ms1
= −σ1 − α1

= −(α1 + α2 + · · · + αs) = −τ1,

(−1)s− j+1Ms− j,1 − (−1)s− jα1Ms− j+1,1

(−1)s+1Ms1
= (−1) jσ j + (−1) jα1σ j−1

= (−1) jτ j , ( j = 2, 3, . . . , s − 1),

and

− α1M11

(−1)s+1Ms1
= (−1)sα1σs−1 = (−1)s(α1α2 . . . αs) = (−1)sτs .

So L(w) becomes

L(w) = w(s) − τ1w
(s−1) + · · · + (−1) jτ jw

(s− j) + · · · + (−1)sτsw. (2.26)

Since

( f (z)n)′ = n f (z)n−1 f ′(z),
( f (z)n)′′ = n(n − 1) f (z)n−2( f ′(z))2 + n f (z)n−1 f ′′(z),
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we deduce inductively that, for m = 1, 2, . . . , s,

( f (z)n)(m) = n(n − 1) . . . (n − (m − 1)) f (z)n−m( f ′(z))m

+
m−1∑
j=2

∑
λ

γ jλ f (z)
n− j ( f ′(z))λ j1( f ′′(z))λ j2 · · · ( f (m−1)(z))λ j,m−1

+ n f (z)n−1 f (m)(z), (2.27)

where γ jλ are the positive integers, λ j1, λ j2, . . . , λ j,m−1 are the non-negative integers
and the sum

∑
λ

is carried out such that λ j1+λ j2+· · ·+λ j,m−1 = j and λ j1+2λ j2+
· · · + (m − 1)λ j,m−1 = m. By (2.26) and (2.27), we get

L( f (z)n) = f (z)n−sφ, (2.28)

where φ is a differential polynomial in f (z) of degree s with constant coefficients. By
(2.24), (2.26) and (2.28), we get

f (z)n−sφ = −L(p(z) f (z + η)), (2.29)

where L(p(z) f (z + η)) is a differential–difference polynomial in f (z) of degree 1
with polynomial coefficients.

If φ �≡ 0, then by (2.29), n ≥ s + 2, Lemma 2.2 and Remark 2.1, we get

T (r, φ) = m(r, φ) = S(r, f ),

T (r, f (z)φ) = m(r, f (z)φ) = S(r, f ). (2.30)

The above two equalities give

T (r, f (z)) ≤ T (r, f (z)φ) + T

(
r,

1

φ

)
= S(r, f ),

a contradiction. Sowemust have φ ≡ 0, which yields L( f (z)n) ≡ 0 and L(p(z) f (z+
η)) ≡ 0. By L(p(z) f (z + η)) ≡ 0 and (2.26), we get

(p(z) f (z + η))(s) − τ1(p(z) f (z + η))(s−1) + · · · + (−1) jτ j (p(z) f (z + η))(s− j)

+ · · · + (−1)sτs p(z) f (z + η) ≡ 0.

The characteristic equation of this equation is

λs − τ1λ
s−1 + · · · + (−1) jτ jλ

s− j + · · · + (−1)sτs = 0. (2.31)

Since (2.31) has s distinct roots α1, α2, . . . , αs , we see that p(z) f (z+η) has the form

p(z) f (z + η) = c̃1e
α1z + c̃2e

α2z + · · · + c̃se
αs z,
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where c̃ j ( j = 1, 2 . . . , s) are the constants. So

f (z) = c1e
α1z + c2e

α2z + · · · + cse
αs z, (2.32)

where c j = c̃ j e
−α j η

p(z−η)
( j = 1, 2 · · · , s) are the rational functions.

Similarly, we deduce from L( f (z)n) ≡ 0 that

f (z)n = d1e
α1z + d2e

α2z + · · · + dse
αs z, (2.33)

where d j ( j = 1, 2 · · · , s) are the constants. By (2.32) and (2.33), we get

d1e
α1z + d2e

α2z + · · · + dse
αs z = cn1e

nα1z + cn2e
nα2z + · · · + cns e

nαs z

+
∑

(m1,...,ms )

cm1,...,ms e
(m1α1+m2α2+···+msαs )z,

(2.34)

where cm1,...,ms are the rational functions and the sum
∑

(m1,...,ms )
is carried out such

thatm j ∈ {0, 1, . . . , n−1}( j = 1, 2, . . . , s) andm1+m2+· · ·+ms = n. Since αi
α j

�= n

for all i, j ∈ {1, 2, . . . , s} and nαk �= lk1α1 + lk2α2 + · · · + lksαs for k = 5, 6, . . . , s,
where lk1, lk2, . . . , lks ∈ {0, 1, . . . , n− 1} and lk1 + lk2 + · · ·+ lks = n, by (2.34) and
Lemma 2.3, we get

c5 ≡ c6 ≡ · · · ≡ cs ≡ 0.

So f (z) becomes

f (z) = c1e
α1z + c2e

α2z + c3e
α4z + c4e

α4z . (2.35)

By (2.33), (2.35) and Lemma 2.5, we obtain that c1 ≡ c2 ≡ c3 ≡ c4 ≡ 0, which gives
f (z) ≡ 0, a contradiction. Therefore, we proved that the Eq. (1.2) does not have any
entire solution of hyper-order less than one when s > 1.

From the above discussion, we see that any meromorphic solution f (z) of the
equation (1.2) must satisfy σ2( f ) ≥ 1.

3 Proof of Theorem 1.2

To prove Theorems 1.2 and 1.3, we also need the following lemma.

Lemma 3.1 ([15]) Let c be a non-zero constant, let H(z) be a meromorphic function
and let h(z) be a polynomial with deg h(z) ≥ 1. If σ(H(z)) < σ(eh(z)), then

T (r, H(z)) = S(r, eh(z)), T (r, H(z + c)) = S(r, eh(z)).
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Proof of Theorem 1.2. Suppose that (1.2) has a meromorphic solution f (z) with
σ2( f ) < 1. From the proof of Theorem 1.1, we see that f (z) is a transcendental
entire function. 
�

By Lemma 2.1, we get

T (r, f (z)n + p(z) f (z + η)) = m(r, f (z)n + p(z) f (z + η))

≥ m(r, f (z)n) − m

(
r, p(z)

f (z + η)

f (z)
f (z)

)
− log 2

≥ nm(r, f (z)) − m(r, f (z)) + S(r, f )

= (n − 1)m(r, f (z)) + S(r, f )

= (n − 1)T (r, f (z)) + S(r, f ). (3.1)

On the other hand,

T (r, β1e
α1z + β2e

α2z + · · · + βse
αs z)

≤ T (r, β1e
α1z) + T (r, β2e

α2z) + · · · + T (r, βse
αs z) + O(1)

= (|α1| + |α2| + · · · + |αs |)r
π

(1 + o(1)). (3.2)

By (1.2), (3.1) and (3.2), we get

(n − 1)T (r, f (z)) + S(r, f ) ≤ (|α1| + |α2| + · · · + |αs |)r
π

(1 + o(1)).

So σ( f ) ≤ 1. If σ( f ) < 1, then by Lemma 3.1, we see that for 1 ≤ h < k ≤ s,

T (r, f (z)n + p(z) f (z + η)) = S(r, e(αh−αk )z).

By (1.2) and Lemma 2.3, we get β1 = β2 = · · · = βs = 0, which contradicts the
hypotheses. So σ( f ) = 1.

To prove �(0, f ) = 0, we divide our discussion into two cases.
Case 1. s = 1. As in the proof of Theorem 1.1, we get (2.10) and (2.11). Further-

more, we have

n f ′(z) − α1 f (z) = f (z)

(
n
f ′(z)
f (z)

− α1

)
. (3.3)

If n f ′(z) − α1 f (z) ≡ 0, as in the proof of Theorem 1.1, we get a contradiction. So
n f ′(z) − α1 f (z) �≡ 0. By logarithmic derivative lemma, we get

m

(
r, n

f ′(z)
f (z)

− α1

)
= S(r, f ).
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Combining this equality with

N

(
r, n

f ′(z)
f (z)

− α1

)
= N

(
r,

1

f (z)

)
,

we get

T

(
r, n

f ′(z)
f (z)

− α1

)
= N

(
r,

1

f (z)

)
+ S(r, f ). (3.4)

(2.11), (3.3) and (3.4) yield

T (r, f (z)) = T

⎛
⎝r,

n f ′(z) − α1 f (z)

n f ′(z)
f (z) − α1

⎞
⎠

≤ T (r, n f ′(z) − α1 f (z)) + T

(
r, n

f ′(z)
f (z)

− α1

)
+ O(1)

= N

(
r,

1

f (z)

)
+ S(r, f ),

which gives �(0, f ) = 0.
Case 2. s > 1. As in the proof of Theorem 1.1, we get (2.14)–(2.29). If φ ≡ 0, then

as in the proof of Theorem 1.1, we get a contradiction. So φ �≡ 0 and (2.30) holds. By
(2.28), we have

f (z)n
L( f (z)n)

f (z)n
= L( f (z)n) = f (z)n−sφ = f (z)n

φ

f (z)s
,

which gives

L( f (z)n)

f (z)n
= φ

f (z)s
. (3.5)

By logarithmic derivative lemma, we get for m = 1, 2, . . . , s,

m

(
r,

( f (z)n)(m)

f (z)n

)
= S(r, f (z)n) = S(r, f ). (3.6)

Combining (3.6) with (2.26) and (3.5), we get

m

(
r,

φ

f (z)s

)
= m

(
r,

L( f (z)n)

f (z)n

)
= S(r, f ). (3.7)
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For m = 1, 2, . . . , s, we have

N

(
r,

( f (z)n)(m)

f (z)n

)
≤ mN

(
r,

1

f (z)n

)
= mN

(
r,

1

f (z)

)
. (3.8)

Combining (3.8) with (2.26) and (3.5), we get

N

(
r,

φ

f (z)s

)
= N

(
r,

L( f (z)n)

f (z)n

)
≤ sN

(
r,

1

f (z)

)
. (3.9)

(3.7) and (3.9) yield

T

(
r,

φ

f (z)s

)
≤ sN

(
r,

1

f (z)

)
+ S(r, f ). (3.10)

By (2.30) and (3.10), we get

sT (r, f (z)) = T (r, f (z)s)

= T

(
r,

f (z)s

φ
φ

)

≤ T

(
r,

f (z)s

φ

)
+ T (r, φ) + O(1)

≤ sN

(
r,

1

f (z)

)
+ S(r, f ),

which gives �(0, f ) = 0.

4 Proof of Theorem 1.3

Suppose that (1.2) has a meromorphic solution f (z) with σ2( f ) < 1. From the proof
of Theorem 1.1, we see that f (z) is a transcendental entire function. From the proof
of Theorem 1.2, we see that σ( f ) = 1. If λ( f ) < 1, then by Hadamard factorization
theorem, f (z) can be written as

f (z) = H(z)eaz, (4.1)

where a is a non-zero constant and H(z) is an entire function with σ(H) < 1. We
deduce from Lemma 3.1 that for 1 ≤ h < k ≤ s,

T (r, H(z)) = S(r, e(αh−αk )z), T (r, H(z + η)) = S(r, e(αh−αk )z). (4.2)

Substituting (4.1) into the Eq. (1.2), we get

H(z)nenaz + p(z)H(z + η)eaηeaz = β1e
α1z + β2e

α2z + · · · + βse
αs z . (4.3)
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Since α1, α2, . . . , αs are distinct, we deduce from (4.2), (4.3) and Lemma 2.3 that
s = 2 and

α1 = na, α2 = a,

or

α2 = na, α1 = a.

These contradict our hypotheses. So λ( f ) = σ( f ) = 1.
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