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Abstract. In this paper, we investigate the location of zeros and Borel direction for the
solutions of equations

f (n) + An−2(z)f (n−2) + · · ·+ A1(z)f
′
+ A0(z)f = 0(n ≥ 2) (∗)

in an angular domain and obtain a sufficient and necessary condition between Borel di-

rection and the hyper order exponent of convergence of zero sequence of E = f1f2 · · · fn,

where f1, f2, · · · , fn are n linearly independent solutions of the equation (∗). This pa-

per extends previous results.
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1. Introduction

We shall assume that the readers are familiar with the standard notations of
Nevanlinna theory and complex differential equations (see [1, 3]).

Up to now, there are many papers about the zeros distribution of the solutions
of a linear differential equations since it is one of the difficult aspects in the
complex oscillation theory of differential equations (see [5− 15]).

∗The project was supported by the National Natural Science Foundation of China (No.10
871076), and also partly supposed by the School of Mathematical Sciences Foundation of
SCNU, China.
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In order to state our results, we give some definitions.
Let g(z) be an entire function in the plane and let arg z = θ ∈ [0, 2π) be a ray.

We denote angular domain and sectorial domain , for any α < β, respectively,

Ω(α, β) = {z|α ≤ arg z ≤ β, |z| > 0};
Ω((α, β), r) = {z|z ∈ Ω(α, β), |z| < r}.

Let n(Ω((α, β), r), g = a) be the number of a-points, i.e. roots of the equation
g(z) = a in the sectorial domain Ω((α, β), r).

The hyper order exponent of convergence of zero sequence of g(z) − a in
angular domain Ω(α, β) is defined by

λ2(Ω(α, β), g = a) = lim
r→∞

log log n(Ω((α, β), r), g = a)
log r

.

We also denote, for each ε > 0, the hyper order exponent of convergence of
zero sequence of g(z) in the angular domain Ω(θ − ε, θ + ε) by λ2,θ,ε(g), i.e.

λ2,θ,ε(g) = lim
r→∞

log log n(Ω((θ − ε, θ + ε), r), g = a)
log r

,

and by λθ(g) = lim
ε→0

λθ,ε(g) and λ2,θ(g) = lim
ε→0

λ2,θ,ε(g) respectively.

Our proofs also require the Nevanlinna characteristic function for an angular
domain (see [2, 9]). If 0 < β − α ≤ 2π and k = π

β−α and g(z) is meromorphic
on the angular domain Ω(α, β), we denote

Aα,β(r, g) =
k

π

∫ r

1

(
1
tk
− tk

r2k

) {
log+ |g(teiα)|+ log+ |g(teiβ)|} dt

t
;

Bα,β(r, g) =
2k

πrk

∫ β

α

log+ |g(reiθ)| sin k(θ − α)dθ;

Cα,β(r, g) = 2
∑

1<|bv|<r

(
1

|bv|k −
|bv|k
r2k

)
sin k(βv − α);

Dα,β(r, g) = Aα,β(r, g) + Bα,β(r, g);
Sα,β(r, g) = Aα,β(r, g) + Bα,β(r, g) + Cα,β(r, g),

where bv = |bv|eiβv (v = 1, 2, · · · ) are the poles of g(z) in angular domain Ω(α, β),
counting multiplicities. Sα,β(r, g) and Cα,β(r, g) are called the Nevanlinna’s
angular characteristic function and the angular counting function respectively.
If we only consider the distinct poles of g(z), we denote the corresponding angular
counting function by Cα,β(r, g). The sectorial hyper order ρ2(Ω(α, β), g) of g(z)
in an angular domain Ω(α, β) will be defined by

ρ2(Ω(α, β), g) = lim
r→∞

log log Sα,β(r, g)
log r

.
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A ray L : arg z = θ is called a Borel direction of hyper order ρ(0 < ρ ≤ +∞)
of g(z) which has the hyper order ρ, if for any sufficiently small ε > 0, we have

lim
r→+∞

log log n (Ω((θ − ε, θ + ε), r), g = a)
log r

= ρ,

with at most two exceptional values a ∈ C∞.

In [5], we considered the equation

f
′′

+ A(z)f = 0, (1.1)

where A(z) is an entire function, and obtained

Theorem 1.A. Let A(z) be an entire function with order σ(A) = +∞ and hyper
order σ2(A) = 0 and let f1 and f2 be two linearly independent solutions of (1.1).
Set E = f1f2. Suppose that the hyper order exponent of convergence of zero
sequence of E is +∞. Then a ray arg z = θ from the origin is a Borel direction
of E with hyper order +∞ and ρ2(Ω(θ − ε, θ + ε), E) = +∞, if and only if
λ2,θ(E) = +∞.

In [6], we extended Theorem 1.A for higher order differential equations

f (n) + An−2(z)f (n−2) + · · ·+ A1(z)f
′
+ A0(z)f = 0, (n ≥ 2), (1.2)

where Aj(z)(j = 0, 1, · · · , n− 2) are entire functions. We obtained

Theorem 1.B. Let Aj(z)(j = 0, 1, · · · , n − 2) be entire functions with order
σ(Aj) = +∞ and hyper order σ2(Aj) = 0(j = 0, 1, 2, · · · , n − 2), and let
f1, f2, · · · , fn be n linearly independent solutions of (1.2). Set E = f1f2 · · · fn.
Suppose that the hyper order exponent of convergence of zeros sequence of E is
+∞. Then a ray arg z = θ from the origin is a Borel direction of E with hyper
order +∞ and ρ2(Ω(θ − ε, θ + ε), E) = +∞, if and only if λ2,θ(E) = +∞.

In [13], Zh.J. Wu and D.C.Sun considered equations (1.1) with A(z) of finite
order and obtained the following Theorem.

Theorem 1.C. Let A(z) be a transcendental meromorphic function of order σ Let
f1, f2 be two linearly independent solutions of (1.1) and E = f1f2. Suppose that
σ2(E) > 0. Then there exists a ray L : arg z = θ such that λ2,θ(E) = σ2(E).
where

λ2,θ(E) = lim
ε→0

lim
r→∞

log log n(Ω((θ − ε, θ + ε), r), E = 0)
log r

.
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We can find it is easy if equation (1.1) with coefficient A(z) having finite
order. We also find that Theorem 1.A and Theorem 1.B both have the condition
ρ2(Ω(θ − ε, θ + ε), E) = +∞ for all sufficient small ε > 0. Here, we omit this
condition and obtain the following Theorem 1.1 by using the methods which is
different from the methods used in [5, 6], but similar to the methods used in [11,
13].

Theorem 1.1. Let Aj(z)(j = 0, 1, · · · , n − 2) be entire functions with order
σ(Aj) = +∞ and hyper order σ2(Aj) = 0(j = 0, 1, 2, · · · , n − 2), and let
f1, f2, · · · , fn be n linearly independent solutions of (1.2). Set E = f1f2 · · · fn.
Suppose that the hyper order exponent of convergence of zeros sequence of E is
+∞. Then a ray arg z = θ from the origin is a Borel direction of E with hyper
order +∞ if and only if λ2,θ(E) = +∞.

2. Lemmas for the Proof

In order to prove our result, we need the followings.
Now, suppose that g(z) is analytic, then g(z) has the power series represen-

tation

g(z) =
∞∑

n=0

anzn, (0 ≤ |z| < ∞).

Denote maximum item and center index of g(z) by µ(r) and ν(r) respectively,
i.e.

µ(r) = max
n≥0

{|an|rn},

and
ν(r) = max{m : µ(r) = |am|rm}.

Set a = max
n≥0

{|an|}, we have

|an|rn ≤ µ(r) ≤ arν(r).

Lemma 2.1. ([4, P18]) Suppose that g(z) is analytic, then for r < R and µ(r) > 1,

M(r, g) ≤ µ(r){1 + log M(R, g)} 2R

R− r
.

On the other hand, under the hypotheses of Lemma 2.1, we

T (r, g) ≤ log M(r, g) ≤ R + r

R− r
T (R, g).
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Together with Lemma 2.1 in which we set R = 2r, we obtain

T (r, g) ≤ log µ(r) + log log M(2r, g) + O(1)
≤ ν(r) log r + log T (4r, g) + O(1). (2.1)

Lemma 2.2. ([7]) Let f1, f2, · · · , fn be n linearly independent meromorphic solu-
tions of

f (n) + An−1(z)f (n−1) + · · ·+ A1(z)f
′
+ A0(z)f = 0, (n ≥ 2),

with meromorphic coefficients. Then the Wronskian determinant

W = W (f1, f2, · · · , fn) =

∣∣∣∣∣∣∣∣∣

f1 f2 · · · fn

f
′
1 f

′
2 · · · f

′
n

...
...

. . .
...

f
(n−1)
1 f

(n−1)
2 · · · f

(n−1)
n

∣∣∣∣∣∣∣∣∣
,

satisfying the differential equation W
′
+ An−1(z)W = 0. Specially, if An−1(z) is

an entire function, then for some c ∈ C,W (f1, f2, · · · , fn) = c exp(−ϕ), where
ϕ is a primitive function of An−1(z).

Lemma 2.3. ([2]) Suppose that g(z)(6≡ constant) is meromorphic in the plane
and that Ω(α, β) is an angular domain, where 0 < β − α ≤ 2π. Then

(i) for any complex number a 6= ∞,

Sα,β

(
r,

1
g − a

)
= Sα,β (r, g) + O(1);

(ii) for any r < R,

Aα,β

(
r,

g
′

g

)
≤ K

{(
R

r

)k ∫ R

1

log T (t, g)
t1+k

dt + log
r

R− r
+ log

R

r
+ 1

}
,

and

Bα,β

(
r,

g
′

g

)
≤ 4k

rk
m

(
r,

g
′

g

)
,

where k =
π

β − α
and K is a positive constant not depending on r and R.

3. The Proof of Theorem 1.1

Proof. The proof of Theorem 1.1 will be completed by the following three steps.
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Step 1. We prove, for any sufficiently small ε > 0, on Ω((θ − ε, θ + ε), r),

Sθ−ε,θ+ε(r,E) = O

{
n

(
Ω((θ − ε, θ + ε), r),

1
E

)
+ exp((2r)ε)

}
.

Suppose that f(z) is a non-trivial solution of (2.2). Then

f (n)

f
+ An−2(z)

f (n−2)

f
+ · · ·+ A1(z)

f
′

f
+ A0(z) = 0. (3.1)

We apply Wiman-Valiron theory to (3.1). Hence there exists a set D1 ⊂ [0,+∞)
of finite logarithmic measure such that if r 6∈ D1 and z is a point on |z| = r at
which |f(z)| = M(r, f), then

∣∣∣∣
f (j)

f

∣∣∣∣ =
(

ν(r)
z

)j

(1 + o(1)), j = 1, 2, · · · , n, (3.2)

where ν(r) denotes the central index of f .
It follows from (3.1) and (3.2) that

ν(r)n(1 + o(1)) + ν(r)n−2z2An−2(z)(1 + o(1)) + · · ·
+ν(r)zn−1A1(z)(1 + o(1)) + znA0(z) = 0. (3.3)

Set σ2 = max
0≤j≤n−2

{σ2(Aj)}. For all arbitrary ε > 0, there exists a set D2 ⊂
(1,+∞) of finite logarithmic measure such that

|Aj(z)| ≤ exp{exp
(
rσ2+ε

)}, j = 0, 1, 2, · · · , n− 2, (3.4)

when z 6∈ [0, 1] ∪D2 and r → +∞.

It follows from (3.3) and (3.4) that

ν(r) ≤ nrn exp{exp
(
rσ2+ε

)} ≤ exp{exp
(
rσ2+2ε

)}. (3.5)

Since f(z) is analytic, f(z) satisfies the condition of Lemma 2.1. Thus, (2.1)
and (3.5) implies

lim
r→+∞

log log log T (r, f)
log r

≤ σ2. (3.6)

Now we suppose that f1, f2, · · · , fn be n linearly independent solutions of
(1.2). Set E = f1f2 · · · fn, and Wronskian determinant

W = W (f1, f2, · · · , fn) =

∣∣∣∣∣∣∣∣∣

f1 f2 · · · fn

f
′
1 f

′
2 · · · f

′
n

...
...

. . .
...

f
(n−1)
1 f

(n−1)
2 · · · f

(n−1)
n

∣∣∣∣∣∣∣∣∣
. (3.7)
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It follows from Lemma 2.2, without loss of generality, we can set

W (f1, f2, · · · , fn) = 1.

From (3.6), we have

lim
r→+∞

log log log T (r, fj)
log r

≤ σ2, (j = 1, 2, · · · , n). (3.8)

Hence

lim
r→+∞

log log log T (r,E)
log r

≤ σ2. (3.9)

Now dividing (3.7) by E, we have

1
E

=
W

E
=

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
f
′
1

f1

f
′
2

f2
· · · f

′
n

fn

...
...

. . .
...

f
(n−1)
1
f1

f
(n−1)
2
f2

· · · f(n−1)
n

fn

∣∣∣∣∣∣∣∣∣∣∣

=
∑

1≤js 6=j1≤n

(−1)τ(j1,j2,··· ,jn) · 1j1 ·
f
′
j2

fj2

· f
′′
j3

fj3

· · · f
(s−1)
js

fjs

· · · f
(n−1)
jn

fjn

=
∑

1≤js 6=j1≤n

(−1)τ(j1,j2,··· ,jn)
n∏

s=2

f
(s−1)
js

fjs

, (3.10)

where 1j1 denotes the number 1 in row 1 and in column j1 and τ(j1, j2, · · · , jn)
denotes the inverse order number of j1, j2, · · · , jn, and j1, j2, · · · , jn is an arrange-
ment of 1, 2, · · · , n. We deduce from (3.8) and Lemma 2.3 (ii) in which we set
R = 2r that, for j = 1, 2, · · ·n,

Aθ−ε,θ+ε

(
r,

f
′
j

fj

)
≤ K

∫ 2r

1

log T (r, fj)
t1+k

dt + O(1)

≤ K

∫ 2r

1

exp(tσ2+ε)
t1+

π
2ε

dt + O(1) ≤ K exp((2r)σ2+ε).

for all sufficiently small ε > 0, where K is a sufficiently large positive constant
and the following K is the same but can be different.

Since, for j = 1, 2, · · · , n, and for all sufficiently small ε > 0,

m

(
r,

f
′
j

fj

)
= O (log T (2r, fj) + log r) ≤ K exp((2r)σ2+ε),

we deduce from Lemma 2.3 (ii) that, for j = 1, 2, · · · , n, and for all sufficiently
small ε > 0,

Bθ−ε,θ+ε

(
r,

f
′
j

fj

)
≤ K exp((2r)σ2+ε),
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therefore we have

Dθ−ε,θ+ε

(
r,

f
′
j

fj

)
≤ K exp((2r)σ2+ε), j = 1, 2, · · · , n. (3.11)

for all sufficiently small ε > 0.

Similarly, we have, for j = 1, 2, · · · , n, and for all sufficiently small ε > 0,

Dθ−ε,θ+ε

(
r,

f
(s)
j

fj

)
≤

s∑

l=1

Dθ−ε,θ+ε

(
r,

f
(l)
j

f
(l−1)
j

)
≤ K exp((2r)σ2+ε). (3.12)

It follows from (3.10) and (3.12) that

Dθ−ε,θ+ε

(
r,

1
E

)
= Dθ−ε,θ+ε


r,

∑

1≤js 6=j1≤n

(−1)τ(j1,j2,··· ,jn)
n∏

s=2

f
(s−1)
js

fjs




≤ K exp((2r)σ2+ε),

for all sufficiently small ε > 0.

Since, by Lemma 2.3 (i),

Sθ−ε,θ+ε(r,E) = Sθ−ε,θ+ε(r,
1
E

)+O(1) = Dθ−ε,θ+ε(r,
1
E

)+Cθ−ε,θ+ε(r,
1
E

)+O(1),

we have, for all sufficiently small ε > 0,

Sθ−ε,θ+ε(r,E) ≤ K

{
Cθ−ε,θ+ε(r,

1
E

) + exp
(
(2r)σ2+ε

)}
. (3.13)

Let aν = |aν |eiαν (ν = 1, 2, · · · ) be the zeros of E in the angular domain
Ω(θ − ε, θ + ε). Then

Cθ−ε,θ+ε

(
r,

1
E

)
= 2

∑

1<|aν |<r

(
1

|aν |k −
|aν |k
r2k

)
sin k(αν − θ + ε)

≤ 2
∑

1<|aν |<r

1
|aν |k = 2

∫ r

1

1
tk

dn(t)

≤ 2n

(
Ω((θ − ε, θ + ε) , r) ,

1
E

)
+ O(1) (3.14)

It follows from (3.13) and (3.14) that, for all sufficiently small ε > 0 and
σ2 = max

0≤j≤n
{σ2(Aj)} = 0,

Sθ−ε,θ+ε(r,E) = O

{
n

(
Ω((θ − ε, θ + ε), r),

1
E

)
+ exp((2r)σ2+ε)

}
. (3.15)
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Step 2. We prove, for any sufficiently small ε > 0 and k =
π

2ε
, on Ω((θ − ε, θ +

ε), r),

Sθ−ε,θ+ε(r,E) ≥
(

1− 1
r2k

)
n

(
Ω

((
θ − 2ε

3 , θ + 2ε
3

)
, r

)
, 1

E

)

rk
.

Suppose that aν = |aν |eiαν (ν = 1, 2, · · · ) are the roots of E = 0, counting

multiplicities, in angular domain Ω(θ− ε, θ + ε). We first observe that θ− 2ε

3
<

αv < θ +
2ε

3
implies for k =

π

2ε
the inequalities

k · ε

3
< k(αv − θ + ε) < π − k · ε

3
.

Hence
sin k(αv − θ0 + ε) ≥ sin(k · ε

3
) = sin

π

6
=

1
2
. (3.16)

Moreover, we write a sum below as a Stieltjes− integral,

∑ (
1

|aν |k −
|aν |k
r2k

)
=

∑ (
1

|aν |k
)
−

∑ ( |aν |k
r2k

)

=
∫ r

1

dn(t)
tk

− 1
r2k

∫ r

1

tkdn(t),

where a short hand notation n(t) = n

(
Ω((θ − 2ε

3
, θ +

2ε

3
), t),

1
E

)
will be used.

Application of Lemma 2.3(i), (3.16) and the partial integration of the above
Stieltjes− integrals and the definition of Sα,β(r,E) now results in

Sθ−ε,θ+ε(r,E) = Sθ−ε,θ+ε(r,
1
E

) + O(1) ≥ Cθ−ε,θ+ε(r,
1
E

) + O(1)

= 2
∑

1<|aν |<r

(
1

|aν |k −
|aν |k
r2k

)
sin k(αν − θ + ε) + O(1)

≥ 2
∑

1<|aν |<r

θ− 2ε
3 <αν <θ+ 2ε

3

(
1

|aν |k −
|aν |k
r)2k

)
sin(k · ε

3
) + O(1)

= 2
{∫ r

1

dn(t)
tk

− 1
r2k

∫ r

1

tkdn(t)
}

sin
π

6
+ O(1)

=
n(r)
rk

+ k

∫ r

1

n(t)
t1+k

dt− rkn(r)
r2k

+
k

r2k

∫ r

1

tk−1n(t)dt + O(1)

≥
(

1− 1
r2k

)
n(r)
rk

+ O(1), (3.17)

where n(r) is the numbers of the roots of the equation E(z) = 0, counting

multiplicities, on the sector Ω((θ − 2ε

3
, θ +

2ε

3
), r).
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Step 3. We prove that λ2,θ(E) = +∞ if and only if for each sufficiently small
ε > 0,

lim
r→+∞

log log Sθ−ε,θ+ε(r,E)
log r

= +∞.

The prove is trivial from (3.15) and (3.17).

This concludes the proof of Theorem 1.1.
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