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PERTURBATION RESULTS OF SECOND ORDER LINEAR

DIFFERENTIAL EQUATIONS WITH PERIODIC COEFFICIENTS

Huang Zhibo Chen Zongxuan

Abstract. Two perturbation results on the linear differential function f
′′

+Π (z)A(z)f = 0 are

obtained, where Π (z) and A(z) are periodic entire functions with period 2πi and σe(Π ) < σe(A).

§1 Introduction

The standard notation from Nevanlinna theory is used in this paper(see [1-3]). In addition,

we use the notation σ(f) and λ(f) respectively to denote the order of growth and exponent of

convergence of zeros for a meromorphic function f . The following results were proved in [4].

Theorem A. Let A(z) = B(ez), where B(ζ) = g1(1/ζ) + g2(ζ), g1 and g2 are entire functions

with g2 transcendental and σ(g2) not equal to a positive integer or infinity, and g1 arbitrary.

(i) Suppose σ(g2) > 1.

(a) If f is a non-trivial solution of

f
′′

+A(z)f = 0 (1.1)

with λe(f) < σ(g2), then f(z) and f(z + 2πi) are linearly dependent.

(b) If f1 and f2 are any two linearly independent solutions of (1.1), then λe(f1f2) ≥ σ(g2).

(ii) Suppose σ(g2) < 1.

(a) If f is a non-trivial solution of (1.1) with λe(f) < 1, then f(z) and f(z + 2πi) are linearly

dependent.

(b) If f1 and f2 are any two linearly independent solutions of (1.1), then λe(f1f2) ≥ 1.

We remark that the conclusion of Theorem A is yet valid if we assume σ(g1) is not equal

to an integer or infinity, with g2 arbitrary and B(ζ) = g1(1/ζ) + g2(ζ). In this case when g1

is transcendental with its order not equal to an integer or infinity and g2 is arbitrary, we need

only consider B∗(η) = B(1/η) = g1(η) + g2(1/η), g1 in 0 < |η| < +∞, η = 1/ζ.

Theorem B. Let g(ζ) be a transcendental entire function and its order be not a positive integer
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and infinity. Let A(z) = B(ez), where B(ζ) = g(1/ζ)+Σp
j=1bjζ

j and p is an odd positive integer,

then λ(f) = +∞ for each non-trivial solution f of (1.1). In fact, the stronger conclusion

log+N(r, f) 6= o(r) (1.2)

holds.

§2 Main results

Suppose (1.1) admits a non-trivial solution that has a finite e-type exponent of convergence

of zeros. If Π (z) is a periodic entire function with period 2πi and σe(Π ) < σe(A), what can

we say about the e-type exponent of convergence of zeros for any two linearly independent

solutions of the equation

f
′′

+ Π (z)A(z)f = 0? (2.1)

A perturbation result for differential function

f
′′

+ (A(z) + Π (z))f = 0 (2.2)

where the coefficients of (2.2) are not necessarily periodic is given in [5], and a perturbation

result of (2.2) where the coefficients are periodic is given in [4]. We answer the above problem

based on the method used in [4,5] coupled with the special properties of periodic coefficients.

Theorem 1. Let B(ζ) = g1(1/ζ) + g2(ζ), C(ζ) = g3, where g1, g2 and g3 are entire func-

tions of finite order such that σ(g2) is a positive integer, and σ(g3) < σ(g2). Suppose A(z) =

B(ez),Π (z) = C(ez) and furthermore that (1.1) admits a non-trivial solution f with λe(f) <

σ(g2) and that f(z) and f(z + 2πi) are linearly independent. Then

(i) for any non-trivial solution h of (2.1) with λe(h) < σ(g2), h(z) and h(z+2πi) are linearly

dependent.

(ii) for any two linearly independent solutions h1 and h2 of (2.1), we must have λe(h1h2) ≥

σ(g2).

We easily deduce the following result from Theorem 1.

Corollary. Under the assumption in Theorem 1, any two linearly independent solutions h1

and h2 of (2.1) must have λ(h1h2) = +∞.

Theorem B investigates the oscillation properties of any non-trivial solution of (1.1) with

B(ζ) = g(1/ζ) + Σp
j=1bjζ

j while p is an odd positive integer and σ(g) is not a positive integer

and infinity. We now investigate perturbation problem of (2.1) precisely when σ(g) is a positive

integer.

Theorem 2. Let g(ζ) be a transcendental entire function of an integer order σ(g), and C(ζ) 6≡ 0

be an entire function with σ(C) < σ(g). Let A(z) = B(ez), where B(ζ) = Σp
j=1b−jζ

−j + g(ζ),

p is an odd positive integer and Π (z) = C(ez). Suppose (1.1) admits a non-trivial solution f

with λ(f) < +∞, then any non-trivial solution h of (2.1) must have λ(h) = +∞. In fact, the

stronger conclusion (1.2) holds.

§3 Preliminaries for the proofs of main results

The main tools that we use in this paper are Nevanlinna theory in C
[2,6]
0 where C0 = C \{z :

|z| ≤ R0} and Valiron representation for functions analytic in C
[7]
0 , and the fact that if f1 and f2
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are two non-trivial, linearly independent solutions of (1.1), then the product E(z) = f1(z)f2(z)

satisfies the differential equation

−4A(z) = c2

E2(z) −
(

E′(z)
E(z)

)2

+ 2E′′(z)
E(z) , (3.1)

where c 6= 0 is the Wronskian of f1 and f2 (see [1]), and

T (r, E) = N(r, 1/E) + 1
2T (r, A) +O(log rT (r, E)) n.e. (3.2)

In general, we use “n.e.” to denote that an asymptotic relation holds except a set of finite

measure. Our argument actually depends on an analogous formula of (3.2) on the Valiron

representation of periodic functions.

In this paper, we use the following definitions[4,8].

Let A(z) be an entire function. We define

σe(A) = lim
r→+∞

log T (r,A)
r (3.3)

to be the e-type order of A(z), and also define

λe(A) = lim
r→+∞

log+ N(r,1/A)
r (3.4)

to be the e-type exponent of convergence of zeros of A(z). We shall have occasions to consider

the zeros of A(z) in the right-half plane only. In that case, we define the upper limit in (3.4) by

λeR(A) when we only count the zeros of A(z) in the right-half plane, and similarly, we define

λeL(A) to be the upper limit in (3.4) when we only count the zeros of A(z) in the left-half

plane.

Let B(ζ) be analytic in 0 < |ζ| < +∞, hence we have a representation B(ζ) = g1(1/ζ) +

g2(ζ), where both g1(ζ) and g2(ζ) are entire functions. Let A(z) = B(ez) = A1(z) + A2(z),

where A1(z) = g1(e
−z) and A2(z) = g2(e

z). Observe that the transformation ζ = ez is a

one-to-one correspondence between the sets {z : − log ρ ≤ Rez ≤ log ρ,−π < Imz ≤ π} and

{ζ : ρ−1 ≤ |ζ| ≤ ρ}. By the periodicity of ez, we have

max
ρ−1≤|ζ|≤ρ

|B(ζ)| = max
− log ρ≤Rez≤log ρ,

−π<Imz≤π

|A(z)| ≤ max
|z|≤log ρ+π

|A(z)|

≤ max
−(log ρ+π)≤Rez≤log ρ+π,

−π<Imz≤π

|A(z)| = max
(eπρ)−1≤|ζ|≤(eπρ)

|B(ζ)|,

so deduce that

σe(A) = lim
ρ→+∞

log log max
ρ−1≤|ζ|≤ρ

|B(ζ)|

log ρ . (3.5)

From max
ρ−1≤|ζ|≤ρ

|B(ζ)| = max{ max
|ζ|=ρ−1

|B(ζ)|,max
|ζ|=ρ

|B(ζ)|}, this together with (3.5) yields

σe(A) = lim
ρ→+∞

log log max
ρ−1≤|ζ|≤ρ

|B(ζ)|

log ρ = max{σ(g1), σ(g2)}. (3.6)

In particular, σe(A1) = σ(g1), σe(A2) = σ(g2).

Let us now turn to the discussion of zeros. Let n(D, 1/F ) be the number of zeros of F (z)

in the set D, then we deduce

n
(

ρ−1 ≤ |ζ| ≤ ρ, 1/B(ζ)
)

= n

({

− log ρ ≤ Rez ≤ log ρ

−π < Imz ≤ π

}

, 1/A(z)

)

≤ n ({|z| ≤ log ρ+ π}, 1/A(z))



408 Appl. Math. J. Chinese Univ. Ser. B Vol. 22, No. 4

≤ 2

(

(log ρ+ π) − π

2π
+ 1

)

n

({

−(log ρ+ π) ≤ Rez ≤ log ρ+ π

−π < Imz ≤ π

}

, 1/A(z)

)

=

(

log ρ

π
+ 2

)

n
(

{(eπρ)−1 ≤ |ζ| ≤ eπρ}, 1/B(ζ)
)

.

Thus

λe(A) = lim
ρ→+∞

log n({ρ−1≤|ζ|≤ρ},1/B(ζ))
log ρ . (3.7)

Similarly, we have

λeR(A) = lim
ρ→+∞

log n({1<|ζ|≤ρ},1/B(ζ))
log ρ ;

λeL(A) = lim
ρ→+∞

log n({ρ−1≤|ζ|≤1},1/B(ζ))
log ρ .

(3.8)

Thus λe(A) = max{λeL(A), λeR(A)}.

If f is analytic in C0, then [7] implies that

f(z) = znΘ(z)u(z), (3.9)

where n is an integer, Θ(z) is analytic and non-vanishing on C0 ∪ {∞}, and u(z) is an entire

function with u(z) = π(z)eh(z), the function π(z) is a Weierstrass product formed from the

zeros of f in C0, and h(z) is an entire function.

Letting R0 = 1, we may regard B(ζ) to be analytic in C∗, where C∗ := C \ {z : |z| ≤ 1}.

By (3.9) we have a similar representation

B(ζ) = ζnR(ζ)b(ζ), (3.10)

where n is an integer, R(ζ) is analytic and non-vanishing on C∗ ∪ {∞}, and b(ζ) is an entire

function. From (3.10) we obtain

σ(g2) = lim
ρ→+∞

log log max
|ζ|=ρ

|B(ζ)|

log ρ = lim
ρ→+∞

log log M(ρ,b(ζ))
log ρ = σ(b(ζ)). (3.11)

Since the zeros of B(ζ) and b(ζ) coincide in 1 < |ζ| < +∞, we deduce from (3.8) that

λeR(A) = λ(b(ζ)). (3.12)

Suppose w(z) is meromorphic in C0 := {z : R0 < |z| < +∞}. By a similar argument as in [7],

w(z) has a representation

w(z) = znΘ(z)f(z), (3.13)

where n is an integer, Θ(z) is analytic and non-vanishing on C0 ∪ {∞}, f is a meromorphic

function in C. Let T1(r, w) denote the Nevanlinna characteristic function [1,6] for w(z) in C0,

which is defined by T1(r, w) = m1(r, w) +N1(r, w), where m1(r, w) = 1
2π

∫ 2π

0 log+ |w(reiϕ)|dϕ,

and N1(r, w) is the counting function for the poles of w in C0.

From (3.13) we deduce that

m1(r, w) = m(r, f) +O(log r), (3.14)

and N1(r, w) = N(r, f). Thus

T1(r, w) = T (r, f) +O(log r). (3.15)

Since T (r, f) = T (r, 1/f) +O(1), so

T1(r, 1/w) = T (r, 1/f) +O(log r) = T (r, f) +O(log r) = T1(r, w) +O(log r), (3.16)

that is T1(r, 1/w) = T1(r, w) +O(log r). As in [1,6], we define the order of w in C0 by
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σ1(w) = lim
r→+∞

log T1(r,w)
log r .

§4 Proof of Theorem 1

Lemma 4.1[1]. Let F (r) and G(r) are non-decreasing functions on (0,∞). If

(i) F (r) ≤ G(r) n.e.;

or

(ii) F (r) ≤ G(r), where r 6∈ H ∪ (0, 1], H ⊂ (0,∞) is a set that has finite logarithmic

measure.

Then for any constant α(α > 1), there exists a constant r0(r0 > 0) such that F (r) ≤ G(αr)

when r > r0.

Lemma 4.2[9]. Let A0(z), A1(z), · · · , Ak−2(z) be periodic entire functions with period 2πi and

functions in ez when k ≥ 2, and Aj(z) satisfies T (r, Aj) = o{T (r, A0)} n.e., j = 1, 2, · · · , k−2.

Assume f 6≡ 0 is a solution of equation w(k) +Ak−2w
k−2 + · · · +A0w = 0. If

(i) A0 is rational in ez and satisfies log+N(r, 1/f) = o(r), or

(ii) A0 is transcendental in ez and satisfies log+N(r, 1/f) = O(r),

then there exists positive number q and 1 ≤ q ≤ k such that f(z) and f(z + q2πi) are linearly

dependent.

Proof of Theorem 1. (i) Let f be a non-trivial solution of (1.1) with λe(f) < σ(g2), and

f(z) and f(z + 2πi) are linearly independent. Since λe(f) < σ(g2) < +∞, Lemma 4.2 implies

that f(z) and f(z + 4πi) must be linearly dependent. Let E(z) = f(z)f(z + 2πi), then

E(z + 2πi) = f(z + 2πi)f(z + 4πi) = c1f(z)f(z + 2πi) = c1E(z),

for some non-zero constant c1. Clearly E′(z)/E(z) and E′′(z)/E(z) are both periodic functions

with period 2πi, while A(z) is periodic by definition. Since (3.1) shows that E2(z) is also a

periodic function with period 2πi, we can find an analytic function Φ(ζ) in 0 < |ζ| < +∞ such

that E2(z) = Φ(ez). Substituting this representation into (3.1) yields

−4B(ζ) = c2

Φ
+ ζ Φ

′

Φ
− 3

4ζ
2
(

Φ
′

Φ

)2

+ ζ2 Φ
′′

Φ
. (4.1)

Since both B(ζ) and Φ(ζ) are analytic in C∗ := {ζ : 1 < |ζ| < +∞}, the Valiron theory gives

their representation as

B(ζ) = ζnR(ζ)b(ζ), Φ(ζ) = ζn1K1(ζ)φ(ζ), (4.2)

where n and n1 are some integers, R(ζ) and K1(ζ) are functions being analytic and non-

vanishing on C∗ ∪ {∞} and b(ζ) and φ(ζ) are entire functions. By (3.14) and the lemma on

logarithmic derivative in [10], we deduce from (4.1) that

m1(ρ, 1/Φ) = m1(ρ,B) +O{log(ρ logT (ρ, φ))} n.e. (4.3)

Since N1(ρ,B) ≡ 0, (4.3) implies

T1(ρ, 1/Φ) = N1(ρ, 1/Φ) + T1(ρ,B) +O{log(ρ logT (ρ, φ))}. (4.4)

Applying (3.15)-(3.16) to (4.4) and using the fact that N1(ρ, 1/Φ) = N(ρ, 1/φ), we deduce

T (ρ, 1/φ) = N(ρ, 1/φ) + T (ρ, b) +O{log(ρ logT (ρ, φ))}. (4.5)

It is easy to see that λe(f) = λe(E) = λe(E
2). Since λe(f) < σ(g2), so λeR(E2) ≤ λe(E

2) =

λe(f) < σ(g2). As in (3.12), λ(φ) = λeR(Φ) = λeR(E2). But σ(g2) = σ(b(ζ)) by (3.11), hence
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λ(φ) < σ(b(ζ)). Notice that (4.5) satisfied by φ is an analogous formula to (3.2) satisfied by E.

It follows from (4.5) and Lemma 4.1 that σ(φ) = σ(b(ζ)), thus λ(φ) < σ(φ). We know σ(g2) is

a positive integer, so are σ(b(ζ)) and σ(φ(ζ)). Thus we may rewrite φ(ζ) = π1(ζ)e
P (ζ), where

π1(ζ) is an entire function, σ(π1) < σ = σ(g2), P (ζ) = αζσ , and α is a non-zero constant.

Let us now suppose (2.1) possesses a non-trivial solution h(z) such that λe(h) < σ(g2) but

h(z) and h(z+2πi) are linearly independent. Let F (z) = h(z)h(z+2πi). By a similar argument

that we have applied to E(z) above, we conclude that there exists an analytic function Ψ(ζ) in

0 < |ζ| < +∞ such that F 2(z) = Ψ(ez). Similarly, Ψ(ζ) has a Valiron representation

Ψ(ζ) = ζn2K2(ζ)ψ(ζ) (4.6)

in C∗, where n2 is an integer, K2(ζ) is analytic and non-vanishing on C∗ ∪ {∞}, and ψ(ζ) is

an entire function in C.

We now substitute F 2(z) = Ψ(ζ), with ζ = ez, into (3.1) with A(z) replaced by Π (z)A(z).

This yields

−4C(ζ)B(ζ) =
c2
2

Ψ + ζ Ψ′

Ψ − 3
4ζ

2
(

Ψ′

Ψ

)2

+ ζ2 Ψ′′

Ψ , (4.7)

where c2 is a the Wronskian of h(z) and h(z + 2πi).

In a similar fashion of φ(ζ) ,we have

λ(ψ) = λeR(F 2) ≤ λe(F
2) = λe(h) < σ(g2) = σ(b(ζ)).

We then apply a similar argument to (4.7) to obtain

T (ρ, ψ) = N(ρ, 1/ψ) + T (ρ, d) +O{log ρ logT (ρ, ψ)}. (4.8)

As to (4.1) for (4.5), d(ζ) is an entire function appearing in Valiron representation of

C(ζ)B(ζ) = ζn3Rd(ζ)d(ζ),

where functions Rd(ζ) and d(ζ) play the same role of corresponding functions in (4.2), and it

is easy to check that σ(d) = σ(b(ζ)). It follows from (4.8) and Lemma 4.1 that σ(ψ) = σ(b(ζ)),

and thus λ(ψ) < σ(ψ). Since σ(g2) is a positive integer, so are σ(b(ζ)) and σ(ψ). Thus we may

rewrite ψ(ζ) = π2(ζ)e
Q(ζ), where π2(ζ) is an entire function, Q(ζ) = βζσ , σ(π2) < σ = σ(g2),

and β is a non-zero constant.

Letting Φ(ζ) = R1(ζ)e
P (ζ) and Ψ(ζ) = R2(ζ)e

Q(ζ), where R1(ζ) = ζn1K1(ζ)π1(ζ) and

R2(ζ) = ζn2K2(ζ)π2(ζ), max{σ1(R1), σ1(R2)} < σ = σ(g2), and substituting them into (4.1)

and (4.7) respectively, we get

−4B(ζ) =
c2

R1eP
+ ζ(

R′
1

R1
+ P ′) −

3

4
{(ζ

R′
1

R1
)2 + 2ζ2R

′
1

R1
P ′ + ζ2P ′2}

+ζ2(
R′′

1

R1
+ 2

R′
1

R1
P ′ + P ′2 + P ′′), (4.9)

and

−4C(ζ)B(ζ) =
c22

R2eQ
+ ζ(

R′
2

R2
+Q′) −

3

4
{(ζ

R′
2

R2
)2 + 2ζ2R

′
2

R2
Q′ + ζ2Q′2}

+ζ2(
R′′

2

R2
+ 2

R′
2

R2
Q′ +Q′2 +Q′′). (4.10)
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To multiple (4.9) by C(ζ) yields

−4C(ζ)B(ζ) =
c2

R1eP
C(ζ) + ζ(

R′
1

R1
+ P ′)C(ζ) −

3

4

{

(

ζ
R′

1

R1

)2

+ 2ζ2R
′
1

R1
P ′ + ζ2P ′2

}

C(ζ)

+ζ2

(

R′′
1

R1
+ 2

R′
1

R1
P ′ + P ′2 + P ′′

)

C(ζ). (4.11)

Subtracting (4.11) form (4.10) leads to

0 ≡ c2

R1eP C(ζ) −
c2
2

R2eQ +H(ζ), (4.12)

where H(ζ) is meromorphic function in C∗. In fact, H(ζ) is a differential polynomial in
R′

1

R1
,

R′
2

R2
, C(ζ), P ′, Q′ and their derivatives. We can deduce from the definitions ofR1, R2, C(ζ), P,Q

that σ1(H) < σ = σ(g2). Rewrite (4.12) as

e−P +H1e
−Q = H2, (4.13)

where H1 and H2 are meromorphic functions in C∗, with

H1 = −
c22
c2
R1

R2

1

C(ζ)
, H2 = −

R1

c2
H(ζ)

C(ζ)
,

and max{σ1(H1), σ1(H2)} < σ(g2).

Differentiating (4.13) yields

e−P +
H1Q′−H′

1

P ′ e−Q = −
H′

2

P ′ . (4.14)

Using (4.14) to eliminate e−P from (4.13) yields

H3e
−Q = H4, (4.15)

where H3 = H ′
1 + (P ′ − Q′)H1 and H4 = H2P

′ + H ′
2 are meromorphic functions in C∗ with

σ1(H3), σ1(H4) < σ(g2). Thus H4 ≡ 0 , i.e. H2 = c3e
−P , where c3 is a non-zero constant,

from a simple order consideration in (4.15). We can obtain σ1(H2) = σ = σ(g2). This is a

contradiction to σ1(H2) < σ(g2). Hence h(z) and h(z + 2πi) must be linearly dependent.

(ii) Suppose (2.1) possesses two non-trivial solutions h1 and h2 that are linearly independent

and λe(h1h2) < σ(g2), then λe(hj) < σ(g2) for j = 1, 2. Part (i) implies that hj(z) and

hj(z+2πi) are linearly dependent for j = 1, 2. Let E(z) = f(z)f(z+2πi) and F (z) = h1(z)h2(z),

then F (z + 2πi) = c4F (z) for some non-zero constant c4. Applying a similar argument to E(z)

and F (z) as in part (i) yields σ1(H2) = σ(g2). This is a contradiction. Hence λe(h1h2) ≥ σ(g2).

This completes the proof of Theorem 1.

§5 Proof of Theorem 2

Lemma 5.1 [11]. Let A(z) = B(eαz) ba a periodic entire function with period ω = 2πi/α, and

be transcendent in eαz, i.e., B(ζ) is transcendent and analytic on 0 < |ζ| < +∞. If B(ζ) has a

pole of odd order at ζ = ∞ or ζ = 0 (including those which can be changed into this case by

varying the period of A(z)), and (1.1) has a solution f 6≡ 0 which satisfies condition

log+N(r, 1/f) = o(r) as r → +∞, (5.1)

then f(z) and f(z + ω) are linearly independent.

Proof of Theorem 2. Suppose (1.1) possesses a non-trivial solution f with λ(f) < +∞,

hence λe(f) = 0 < σ(g) by definition (3.4). Thus, Lemma 5.1 implies that f(z) and f(z + 2πi)
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are linearly independent solutions of (1.1), and f(z) and f(z + 2πi) satisfy the hypotheses of

Theorem 1. Suppose (2.1) admits a non-trivial solution h(z) with λe(h) < σ(g), then Lemma

5.1 again implies that h(z) and h(z + 2πi) are linearly independent. Part (ii) of Theorem 1

shows that λe(h(z)h(z + 2πi)) ≥ σ(g) > 0. So λe(h) = λe(h(z)h(z + 2πi)) > 0, and thus (1.2)

holds. This completes the proof of Theorem 2.
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