PERTURBATION RESULTS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS WITH PERIODIC COEFFICIENTS

Huang Zhibo Chen Zongxuan

Abstract. Two perturbation results on the linear differential function $f'' + \Pi(z)A(z)f = 0$ are obtained, where $\Pi(z)$ and A(z) are periodic entire functions with period $2\pi i$ and $\sigma_e(\Pi) < \sigma_e(A)$.

§1 Introduction

The standard notation from Nevanlinna theory is used in this paper(see [1-3]). In addition, we use the notation $\sigma(f)$ and $\lambda(f)$ respectively to denote the order of growth and exponent of convergence of zeros for a meromorphic function f. The following results were proved in [4]. **Theorem A.** Let $A(z) = B(e^z)$, where $B(\zeta) = g_1(1/\zeta) + g_2(\zeta), g_1$ and g_2 are entire functions with g_2 transcendental and $\sigma(g_2)$ not equal to a positive integer or infinity, and g_1 arbitrary. (i) Suppose $\sigma(g_2) > 1$.

(a) If f is a non-trivial solution of

$$f'' + A(z)f = 0 (1.1)$$

with $\lambda_e(f) < \sigma(g_2)$, then f(z) and $f(z + 2\pi i)$ are linearly dependent.

(b) If f_1 and f_2 are any two linearly independent solutions of (1.1), then $\lambda_e(f_1f_2) \ge \sigma(g_2)$.

(ii) Suppose $\sigma(g_2) < 1$.

(a) If f is a non-trivial solution of (1.1) with $\lambda_e(f) < 1$, then f(z) and $f(z + 2\pi i)$ are linearly dependent.

(b) If f_1 and f_2 are any two linearly independent solutions of (1.1), then $\lambda_e(f_1f_2) \ge 1$.

We remark that the conclusion of Theorem A is yet valid if we assume $\sigma(g_1)$ is not equal to an integer or infinity, with g_2 arbitrary and $B(\zeta) = g_1(1/\zeta) + g_2(\zeta)$. In this case when g_1 is transcendental with its order not equal to an integer or infinity and g_2 is arbitrary, we need only consider $B^*(\eta) = B(1/\eta) = g_1(\eta) + g_2(1/\eta)$, g_1 in $0 < |\eta| < +\infty$, $\eta = 1/\zeta$.

Theorem B. Let $g(\zeta)$ be a transcendental entire function and its order be not a positive integer

Received: 2007-01-15.

MR Subject Classification: 30D35, 34A20.

Keywords: complex oscillation, differential function, period, linearly dependent, linearly independent. Digital Object Identifier(DOI): 10.1007/s11766-007-0404-1.

Supported by the College's Ph.D Foundation of China (20050574002) and the Natural Science Foundation of Guangdong Province(06025059).

and infinity. Let $A(z) = B(e^z)$, where $B(\zeta) = g(1/\zeta) + \sum_{j=1}^p b_j \zeta^j$ and p is an odd positive integer, then $\lambda(f) = +\infty$ for each non-trivial solution f of (1.1). In fact, the stronger conclusion

$$\log^+ N(r, f) \neq o(r) \tag{1.2}$$

holds.

§2 Main results

Suppose (1.1) admits a non-trivial solution that has a finite e-type exponent of convergence of zeros. If $\Pi(z)$ is a periodic entire function with period $2\pi i$ and $\sigma_e(\Pi) < \sigma_e(A)$, what can we say about the e-type exponent of convergence of zeros for any two linearly independent solutions of the equation

$$f'' + \Pi(z)A(z)f = 0?$$
(2.1)

A perturbation result for differential function

$$f'' + (A(z) + \Pi(z))f = 0$$
(2.2)

where the coefficients of (2.2) are not necessarily periodic is given in [5], and a perturbation result of (2.2) where the coefficients are periodic is given in [4]. We answer the above problem based on the method used in [4,5] coupled with the special properties of periodic coefficients.

Theorem 1. Let $B(\zeta) = g_1(1/\zeta) + g_2(\zeta)$, $C(\zeta) = g_3$, where g_1, g_2 and g_3 are entire functions of finite order such that $\sigma(g_2)$ is a positive integer, and $\sigma(g_3) < \sigma(g_2)$. Suppose $A(z) = B(e^z)$, $\Pi(z) = C(e^z)$ and furthermore that (1.1) admits a non-trivial solution f with $\lambda_e(f) < \sigma(g_2)$ and that f(z) and $f(z + 2\pi i)$ are linearly independent. Then

(i) for any non-trivial solution h of (2.1) with $\lambda_e(h) < \sigma(g_2)$, h(z) and $h(z+2\pi i)$ are linearly dependent.

(ii) for any two linearly independent solutions h_1 and h_2 of (2.1), we must have $\lambda_e(h_1h_2) \ge \sigma(g_2)$.

We easily deduce the following result from Theorem 1.

Corollary. Under the assumption in Theorem 1, any two linearly independent solutions h_1 and h_2 of (2.1) must have $\lambda(h_1h_2) = +\infty$.

Theorem B investigates the oscillation properties of any non-trivial solution of (1.1) with $B(\zeta) = g(1/\zeta) + \sum_{j=1}^{p} b_j \zeta^j$ while p is an odd positive integer and $\sigma(g)$ is not a positive integer and infinity. We now investigate perturbation problem of (2.1) precisely when $\sigma(g)$ is a positive integer.

Theorem 2. Let $g(\zeta)$ be a transcendental entire function of an integer order $\sigma(g)$, and $C(\zeta) \neq 0$ be an entire function with $\sigma(C) < \sigma(g)$. Let $A(z) = B(e^z)$, where $B(\zeta) = \sum_{j=1}^p b_{-j} \zeta^{-j} + g(\zeta)$, p is an odd positive integer and $\Pi(z) = C(e^z)$. Suppose (1.1) admits a non-trivial solution fwith $\lambda(f) < +\infty$, then any non-trivial solution h of (2.1) must have $\lambda(h) = +\infty$. In fact, the stronger conclusion (1.2) holds.

§3 Preliminaries for the proofs of main results

The main tools that we use in this paper are Nevanlinna theory in $C_0^{[2,6]}$ where $C_0 = C \setminus \{z : |z| \le R_0\}$ and Valiron representation for functions analytic in $C_0^{[7]}$, and the fact that if f_1 and f_2

are two non-trivial, linearly independent solutions of (1.1), then the product $E(z) = f_1(z)f_2(z)$ satisfies the differential equation

$$-4A(z) = \frac{c^2}{E^2(z)} - \left(\frac{E'(z)}{E(z)}\right)^2 + 2\frac{E''(z)}{E(z)},$$
(3.1)

where $c \neq 0$ is the Wronskian of f_1 and f_2 (see [1]), and

$$T(r, E) = N(r, 1/E) + \frac{1}{2}T(r, A) + O(\log rT(r, E))$$
 n.e. (3.2)

In general, we use "n.e." to denote that an asymptotic relation holds except a set of finite measure. Our argument actually depends on an analogous formula of (3.2) on the Valiron representation of periodic functions.

In this paper, we use the following definitions^[4,8].

Let A(z) be an entire function. We define

$$\sigma_e(A) = \overline{\lim_{r \to +\infty} \frac{\log T(r,A)}{r}}$$
(3.3)

to be the e-type order of A(z), and also define

$$\lambda_e(A) = \overline{\lim_{r \to +\infty} \frac{\log^+ N(r, 1/A)}{r}}$$
(3.4)

to be the e-type exponent of convergence of zeros of A(z). We shall have occasions to consider the zeros of A(z) in the right-half plane only. In that case, we define the upper limit in (3.4) by $\lambda_{eR}(A)$ when we only count the zeros of A(z) in the right-half plane, and similarly, we define $\lambda_{eL}(A)$ to be the upper limit in (3.4) when we only count the zeros of A(z) in the left-half plane.

Let $B(\zeta)$ be analytic in $0 < |\zeta| < +\infty$, hence we have a representation $B(\zeta) = g_1(1/\zeta) + g_2(\zeta)$, where both $g_1(\zeta)$ and $g_2(\zeta)$ are entire functions. Let $A(z) = B(e^z) = A_1(z) + A_2(z)$, where $A_1(z) = g_1(e^{-z})$ and $A_2(z) = g_2(e^z)$. Observe that the transformation $\zeta = e^z$ is a one-to-one correspondence between the sets $\{z : -\log \rho \leq \operatorname{Re} z \leq \log \rho, -\pi < \operatorname{Im} z \leq \pi\}$ and $\{\zeta : \rho^{-1} \leq |\zeta| \leq \rho\}$. By the periodicity of e^z , we have

$$\max_{\substack{\rho^{-1} \le |\zeta| \le \rho}} |B(\zeta)| = \max_{\substack{-\log \rho \le \operatorname{Rez} \le \log \rho, \\ -\pi < \operatorname{Imz} \le \pi}} |A(z)| \le \max_{\substack{|z| \le \log \rho + \pi, \\ -\pi < \operatorname{Imz} \le \pi}} |A(z)| = \max_{\substack{(\mathrm{e}^{\pi} \rho)^{-1} \le |\zeta| \le (\mathrm{e}^{\pi} \rho)}} |B(\zeta)|,$$

so deduce that

$$\sigma_e(A) = \frac{1}{\rho \to +\infty} \frac{\log \log_{\rho^{-1} \le |\zeta| \le \rho} |B(\zeta)|}{\log \rho}.$$
(3.5)

From $\max_{\rho^{-1} \le |\zeta| \le \rho} |B(\zeta)| = \max\{\max_{|\zeta| = \rho^{-1}} |B(\zeta)|, \max_{|\zeta| = \rho} |B(\zeta)|\}, \text{ this together with (3.5) yields}$

$$\sigma_e(A) = \overline{\lim_{\rho \to +\infty} \frac{\log \log \left[\rho^{-1} \le |\zeta| \le \rho}{\log \rho}\right]} = \max\{\sigma(g_1), \sigma(g_2)\}.$$
(3.6)

In particular, $\sigma_e(A_1) = \sigma(g_1), \sigma_e(A_2) = \sigma(g_2).$

Let us now turn to the discussion of zeros. Let n(D, 1/F) be the number of zeros of F(z)in the set D, then we deduce

$$n\left(\rho^{-1} \le |\zeta| \le \rho, 1/B(\zeta)\right) = n\left(\left\{\begin{array}{l} -\log\rho \le \operatorname{Re} z \le \log\rho\\ -\pi < \operatorname{Im} z \le \pi\end{array}\right\}, 1/A(z)\right)$$
$$\le n\left(\{|z| \le \log\rho + \pi\}, 1/A(z)\right)$$

407

$$\leq 2\left(\frac{(\log\rho+\pi)-\pi}{2\pi}+1\right)n\left(\begin{cases}-(\log\rho+\pi)\leq\operatorname{Re} z\leq\log\rho+\pi\\-\pi<\operatorname{Im} z\leq\pi\end{cases}\right),1/A(z)$$
$$= \left(\frac{\log\rho}{\pi}+2\right)n\left(\{(\mathrm{e}^{\pi}\rho)^{-1}\leq|\zeta|\leq\mathrm{e}^{\pi}\rho\},1/B(\zeta)\right).$$

Thus

$$\lambda_e(A) = \overline{\lim_{\rho \to +\infty} \frac{\log n\left(\{\rho^{-1} \le |\zeta| \le \rho\}, 1/B(\zeta)\right)}{\log \rho}}.$$
(3.7)

Similarly, we have

$$\lambda_{eR}(A) = \overline{\lim_{\rho \to +\infty} \frac{\log n(\{1 < |\zeta| \le \rho\}, 1/B(\zeta))}{\log \rho}};$$

$$\lambda_{eL}(A) = \overline{\lim_{\rho \to +\infty} \frac{\log n(\{\rho^{-1} \le |\zeta| \le 1\}, 1/B(\zeta))}{\log \rho}}.$$
(3.8)

Thus $\lambda_e(A) = \max\{\lambda_{eL}(A), \lambda_{eR}(A)\}.$

If f is analytic in C_0 , then [7] implies that

$$f(z) = z^n \Theta(z) u(z), \tag{3.9}$$

where n is an integer, $\Theta(z)$ is analytic and non-vanishing on $C_0 \cup \{\infty\}$, and u(z) is an entire function with $u(z) = \pi(z)e^{h(z)}$, the function $\pi(z)$ is a Weierstrass product formed from the zeros of f in C_0 , and h(z) is an entire function.

Letting $R_0 = 1$, we may regard $B(\zeta)$ to be analytic in C^* , where $C^* := C \setminus \{z : |z| \le 1\}$. By (3.9) we have a similar representation

$$B(\zeta) = \zeta^n R(\zeta) b(\zeta), \qquad (3.10)$$

where n is an integer, $R(\zeta)$ is analytic and non-vanishing on $C^* \cup \{\infty\}$, and $b(\zeta)$ is an entire function. From (3.10) we obtain

$$\sigma(g_2) = \overline{\lim_{\rho \to +\infty} \frac{\log \log \max_{|\zeta| = \rho} |B(\zeta)|}{\log \rho}} = \overline{\lim_{\rho \to +\infty} \frac{\log \log M(\rho, b(\zeta))}{\log \rho}} = \sigma(b(\zeta)).$$
(3.11)

Since the zeros of $B(\zeta)$ and $b(\zeta)$ coincide in $1 < |\zeta| < +\infty$, we deduce from (3.8) that

$$\lambda_{eR}(A) = \lambda(b(\zeta)). \tag{3.12}$$

Suppose w(z) is meromorphic in $C_0 := \{z : R_0 < |z| < +\infty\}$. By a similar argument as in [7], w(z) has a representation

$$w(z) = z^n \Theta(z) f(z), \qquad (3.13)$$

where n is an integer, $\Theta(z)$ is analytic and non-vanishing on $C_0 \cup \{\infty\}$, f is a meromorphic function in C. Let $T_1(r, w)$ denote the Nevanlinna characteristic function ^[1,6] for w(z) in C_0 , which is defined by $T_1(r, w) = m_1(r, w) + N_1(r, w)$, where $m_1(r, w) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |w(re^{i\varphi})| d\varphi$, and $N_1(r, w)$ is the counting function for the poles of w in C_0 .

From (3.13) we deduce that

$$m_1(r, w) = m(r, f) + O(\log r),$$
 (3.14)

and $N_1(r, w) = N(r, f)$. Thus

$$T_1(r,w) = T(r,f) + O(\log r).$$
 (3.15)

Since T(r, f) = T(r, 1/f) + O(1), so

$$T_1(r, 1/w) = T(r, 1/f) + O(\log r) = T(r, f) + O(\log r) = T_1(r, w) + O(\log r),$$
(3.16)

that is $T_1(r, 1/w) = T_1(r, w) + O(\log r)$. As in [1,6], we define the order of w in C_0 by

 $\sigma_1(w) = \overline{\lim_{r \to +\infty} \frac{\log T_1(r,w)}{\log r}}.$

§4 Proof of Theorem 1

Lemma 4.1^[1]. Let F(r) and G(r) are non-decreasing functions on $(0, \infty)$. If

(i) $F(r) \leq G(r)$ n.e.;

or

(ii) $F(r) \leq G(r)$, where $r \notin H \cup (0,1]$, $H \subset (0,\infty)$ is a set that has finite logarithmic measure.

Then for any constant $\alpha(\alpha > 1)$, there exists a constant $r_0(r_0 > 0)$ such that $F(r) \leq G(\alpha r)$ when $r > r_0$.

Lemma 4.2^[9]. Let $A_0(z), A_1(z), \dots, A_{k-2}(z)$ be periodic entire functions with period $2\pi i$ and functions in e^z when $k \ge 2$, and $A_j(z)$ satisfies $T(r, A_j) = o\{T(r, A_0)\}$ n.e., $j = 1, 2, \dots, k-2$. Assume $f \not\equiv 0$ is a solution of equation $w^{(k)} + A_{k-2}w^{k-2} + \dots + A_0w = 0$. If

(i) A_0 is rational in e^z and satisfies $\log^+ N(r, 1/f) = o(r)$, or

(ii) A_0 is transcendental in e^z and satisfies $\log^+ N(r, 1/f) = O(r)$,

then there exists positive number q and $1 \le q \le k$ such that f(z) and $f(z + q2\pi i)$ are linearly dependent.

Proof of Theorem 1. (i) Let f be a non-trivial solution of (1.1) with $\lambda_e(f) < \sigma(g_2)$, and f(z) and $f(z + 2\pi i)$ are linearly independent. Since $\lambda_e(f) < \sigma(g_2) < +\infty$, Lemma 4.2 implies that f(z) and $f(z + 4\pi i)$ must be linearly dependent. Let $E(z) = f(z)f(z + 2\pi i)$, then

 $E(z + 2\pi i) = f(z + 2\pi i)f(z + 4\pi i) = c_1 f(z)f(z + 2\pi i) = c_1 E(z),$

for some non-zero constant c_1 . Clearly E'(z)/E(z) and E''(z)/E(z) are both periodic functions with period $2\pi i$, while A(z) is periodic by definition. Since (3.1) shows that $E^2(z)$ is also a periodic function with period $2\pi i$, we can find an analytic function $\Phi(\zeta)$ in $0 < |\zeta| < +\infty$ such that $E^2(z) = \Phi(e^z)$. Substituting this representation into (3.1) yields

$$-4B(\zeta) = \frac{c^2}{\Phi} + \zeta \frac{\Phi'}{\Phi} - \frac{3}{4}\zeta^2 \left(\frac{\Phi'}{\Phi}\right)^2 + \zeta^2 \frac{\Phi''}{\Phi}.$$
(4.1)

Since both $B(\zeta)$ and $\Phi(\zeta)$ are analytic in $C^* := \{\zeta : 1 < |\zeta| < +\infty\}$, the Valiron theory gives their representation as

$$B(\zeta) = \zeta^n R(\zeta) b(\zeta), \quad \Phi(\zeta) = \zeta^{n_1} K_1(\zeta) \phi(\zeta), \tag{4.2}$$

where n and n_1 are some integers, $R(\zeta)$ and $K_1(\zeta)$ are functions being analytic and nonvanishing on $C^* \cup \{\infty\}$ and $b(\zeta)$ and $\phi(\zeta)$ are entire functions. By (3.14) and the lemma on logarithmic derivative in [10], we deduce from (4.1) that

$$m_1(\rho, 1/\Phi) = m_1(\rho, B) + O\{\log(\rho \log T(\rho, \phi))\}$$
 n.e. (4.3)

Since $N_1(\rho, B) \equiv 0$, (4.3) implies

$$T_1(\rho, 1/\Phi) = N_1(\rho, 1/\Phi) + T_1(\rho, B) + O\{\log(\rho \log T(\rho, \phi))\}.$$
(4.4)

Applying (3.15)-(3.16) to (4.4) and using the fact that $N_1(\rho, 1/\Phi) = N(\rho, 1/\phi)$, we deduce

$$T(\rho, 1/\phi) = N(\rho, 1/\phi) + T(\rho, b) + O\{\log(\rho \log T(\rho, \phi))\}.$$
(4.5)

It is easy to see that $\lambda_e(f) = \lambda_e(E) = \lambda_e(E^2)$. Since $\lambda_e(f) < \sigma(g_2)$, so $\lambda_{eR}(E^2) \le \lambda_e(E^2) = \lambda_e(f) < \sigma(g_2)$. As in (3.12), $\lambda(\phi) = \lambda_{eR}(\Phi) = \lambda_{eR}(E^2)$. But $\sigma(g_2) = \sigma(b(\zeta))$ by (3.11), hence

 $\lambda(\phi) < \sigma(b(\zeta))$. Notice that (4.5) satisfied by ϕ is an analogous formula to (3.2) satisfied by E. It follows from (4.5) and Lemma 4.1 that $\sigma(\phi) = \sigma(b(\zeta))$, thus $\lambda(\phi) < \sigma(\phi)$. We know $\sigma(g_2)$ is a positive integer, so are $\sigma(b(\zeta))$ and $\sigma(\phi(\zeta))$. Thus we may rewrite $\phi(\zeta) = \pi_1(\zeta)e^{P(\zeta)}$, where $\pi_1(\zeta)$ is an entire function, $\sigma(\pi_1) < \sigma = \sigma(g_2)$, $P(\zeta) = \alpha\zeta^{\sigma}$, and α is a non-zero constant.

Let us now suppose (2.1) possesses a non-trivial solution h(z) such that $\lambda_e(h) < \sigma(g_2)$ but h(z) and $h(z+2\pi i)$ are linearly independent. Let $F(z) = h(z)h(z+2\pi i)$. By a similar argument that we have applied to E(z) above, we conclude that there exists an analytic function $\Psi(\zeta)$ in $0 < |\zeta| < +\infty$ such that $F^2(z) = \Psi(e^z)$. Similarly, $\Psi(\zeta)$ has a Valiron representation

$$\Psi(\zeta) = \zeta^{n_2} K_2(\zeta) \psi(\zeta) \tag{4.6}$$

in C^* , where n_2 is an integer, $K_2(\zeta)$ is analytic and non-vanishing on $C^* \cup \{\infty\}$, and $\psi(\zeta)$ is an entire function in C.

We now substitute $F^2(z) = \Psi(\zeta)$, with $\zeta = e^z$, into (3.1) with A(z) replaced by $\Pi(z)A(z)$. This yields

$$-4C(\zeta)B(\zeta) = \frac{c_2^2}{\Psi} + \zeta \frac{\Psi'}{\Psi} - \frac{3}{4}\zeta^2 \left(\frac{\Psi'}{\Psi}\right)^2 + \zeta^2 \frac{\Psi''}{\Psi},\tag{4.7}$$

where c_2 is a the Wronskian of h(z) and $h(z + 2\pi i)$.

In a similar fashion of $\phi(\zeta)$, we have

$$\lambda(\psi) = \lambda_{eR}(F^2) \le \lambda_e(F^2) = \lambda_e(h) < \sigma(g_2) = \sigma(b(\zeta)).$$

We then apply a similar argument to (4.7) to obtain

$$T(\rho, \psi) = N(\rho, 1/\psi) + T(\rho, d) + O\{\log \rho \log T(\rho, \psi)\}.$$
(4.8)

As to (4.1) for (4.5), $d(\zeta)$ is an entire function appearing in Valiron representation of

$$C(\zeta)B(\zeta) = \zeta^{n_3}R_d(\zeta)d(\zeta),$$

where functions $R_d(\zeta)$ and $d(\zeta)$ play the same role of corresponding functions in (4.2), and it is easy to check that $\sigma(d) = \sigma(b(\zeta))$. It follows from (4.8) and Lemma 4.1 that $\sigma(\psi) = \sigma(b(\zeta))$, and thus $\lambda(\psi) < \sigma(\psi)$. Since $\sigma(g_2)$ is a positive integer, so are $\sigma(b(\zeta))$ and $\sigma(\psi)$. Thus we may rewrite $\psi(\zeta) = \pi_2(\zeta)e^{Q(\zeta)}$, where $\pi_2(\zeta)$ is an entire function, $Q(\zeta) = \beta\zeta^{\sigma}$, $\sigma(\pi_2) < \sigma = \sigma(g_2)$, and β is a non-zero constant.

Letting $\Phi(\zeta) = R_1(\zeta)e^{P(\zeta)}$ and $\Psi(\zeta) = R_2(\zeta)e^{Q(\zeta)}$, where $R_1(\zeta) = \zeta^{n_1}K_1(\zeta)\pi_1(\zeta)$ and $R_2(\zeta) = \zeta^{n_2}K_2(\zeta)\pi_2(\zeta)$, max $\{\sigma_1(R_1), \sigma_1(R_2)\} < \sigma = \sigma(g_2)$, and substituting them into (4.1) and (4.7) respectively, we get

$$-4B(\zeta) = \frac{c^2}{R_1 e^P} + \zeta(\frac{R'_1}{R_1} + P') - \frac{3}{4} \{ (\zeta \frac{R'_1}{R_1})^2 + 2\zeta^2 \frac{R'_1}{R_1} P' + \zeta^2 {P'}^2 \} + \zeta^2 (\frac{R''_1}{R_1} + 2\frac{R'_1}{R_1} P' + {P'}^2 + P''),$$

$$(4.9)$$

and

$$-4C(\zeta)B(\zeta) = \frac{c_2^2}{R_2e^Q} + \zeta(\frac{R'_2}{R_2} + Q') - \frac{3}{4}\{(\zeta\frac{R'_2}{R_2})^2 + 2\zeta^2\frac{R'_2}{R_2}Q' + \zeta^2{Q'}^2\} + \zeta^2(\frac{R''_2}{R_2} + 2\frac{R'_2}{R_2}Q' + {Q'}^2 + Q'').$$
(4.10)

To multiple (4.9) by $C(\zeta)$ yields

$$-4C(\zeta)B(\zeta) = \frac{c^2}{R_1 e^P}C(\zeta) + \zeta(\frac{R'_1}{R_1} + P')C(\zeta) - \frac{3}{4} \left\{ \left(\zeta\frac{R'_1}{R_1}\right)^2 + 2\zeta^2\frac{R'_1}{R_1}P' + \zeta^2{P'}^2 \right\}C(\zeta) + \zeta^2 \left(\frac{R''_1}{R_1} + 2\frac{R'_1}{R_1}P' + {P'}^2 + {P''}\right)C(\zeta).$$

$$(4.11)$$

Subtracting (4.11) form (4.10) leads to

$$0 \equiv \frac{c^2}{R_1 e^P} C(\zeta) - \frac{c_2^2}{R_2 e^Q} + H(\zeta), \qquad (4.12)$$

where $H(\zeta)$ is meromorphic function in C^* . In fact, $H(\zeta)$ is a differential polynomial in $\frac{R'_1}{R_1}, \frac{R'_2}{R_2}, C(\zeta), P', Q'$ and their derivatives. We can deduce from the definitions of $R_1, R_2, C(\zeta), P, Q$ that $\sigma_1(H) < \sigma = \sigma(g_2)$. Rewrite (4.12) as

$$e^{-P} + H_1 e^{-Q} = H_2, (4.13)$$

where H_1 and H_2 are meromorphic functions in C^* , with

$$H_1 = -\frac{c_2^2}{c^2} \frac{R_1}{R_2} \frac{1}{C(\zeta)}, \quad H_2 = -\frac{R_1}{c^2} \frac{H(\zeta)}{C(\zeta)}$$

and $\max\{\sigma_1(H_1), \sigma_1(H_2)\} < \sigma(g_2)$. Differentiating (4.13) yields

$$e^{-P} + \frac{H_1Q' - H_1'}{P'}e^{-Q} = -\frac{H_2'}{P'}.$$
(4.14)

Using (4.14) to eliminate e^{-P} from (4.13) yields

$$H_3 e^{-Q} = H_4, (4.15)$$

where $H_3 = H'_1 + (P' - Q')H_1$ and $H_4 = H_2P' + H'_2$ are meromorphic functions in C^* with $\sigma_1(H_3), \sigma_1(H_4) < \sigma(g_2)$. Thus $H_4 \equiv 0$, i.e. $H_2 = c_3 e^{-P}$, where c_3 is a non-zero constant, from a simple order consideration in (4.15). We can obtain $\sigma_1(H_2) = \sigma = \sigma(g_2)$. This is a contradiction to $\sigma_1(H_2) < \sigma(g_2)$. Hence h(z) and $h(z + 2\pi i)$ must be linearly dependent.

(ii) Suppose (2.1) possesses two non-trivial solutions h_1 and h_2 that are linearly independent and $\lambda_e(h_1h_2) < \sigma(g_2)$, then $\lambda_e(h_j) < \sigma(g_2)$ for j = 1, 2. Part (i) implies that $h_j(z)$ and $h_j(z+2\pi i)$ are linearly dependent for j = 1, 2. Let $E(z) = f(z)f(z+2\pi i)$ and $F(z) = h_1(z)h_2(z)$, then $F(z+2\pi i) = c_4F(z)$ for some non-zero constant c_4 . Applying a similar argument to E(z)and F(z) as in part (i) yields $\sigma_1(H_2) = \sigma(g_2)$. This is a contradiction. Hence $\lambda_e(h_1h_2) \geq \sigma(g_2)$. This completes the proof of Theorem 1.

§5 Proof of Theorem 2

Lemma 5.1 ^[11]. Let $A(z) = B(e^{\alpha z})$ be a periodic entire function with period $\omega = 2\pi i/\alpha$, and be transcendent in $e^{\alpha z}$, i.e., $B(\zeta)$ is transcendent and analytic on $0 < |\zeta| < +\infty$. If $B(\zeta)$ has a pole of odd order at $\zeta = \infty$ or $\zeta = 0$ (including those which can be changed into this case by varying the period of A(z)), and (1.1) has a solution $f \neq 0$ which satisfies condition

$$\log^+ N(r, 1/f) = o(r) \quad \text{as} \quad r \to +\infty, \tag{5.1}$$

then f(z) and $f(z + \omega)$ are linearly independent.

Proof of Theorem 2. Suppose (1.1) possesses a non-trivial solution f with $\lambda(f) < +\infty$, hence $\lambda_e(f) = 0 < \sigma(g)$ by definition (3.4). Thus, Lemma 5.1 implies that f(z) and $f(z + 2\pi i)$

are linearly independent solutions of (1.1), and f(z) and $f(z + 2\pi i)$ satisfy the hypotheses of Theorem 1. Suppose (2.1) admits a non-trivial solution h(z) with $\lambda_e(h) < \sigma(g)$, then Lemma 5.1 again implies that h(z) and $h(z + 2\pi i)$ are linearly independent. Part (ii) of Theorem 1 shows that $\lambda_e(h(z)h(z + 2\pi i)) \ge \sigma(g) > 0$. So $\lambda_e(h) = \lambda_e(h(z)h(z + 2\pi i)) > 0$, and thus (1.2) holds. This completes the proof of Theorem 2.

References

- 1 Gao Shian, Chen Zongxuan, Chen Tewei.Oscillation Theory of Linear Differential Equations, Wuhan: Huazhong University of Science and Technology Press,1998(Chinese).
- 2 Laine I. Nevanlinna Theory and Complex Differential Equations, Berlin: Walter de Gruyter, 1993.
- 3 Hayman W K. Meromorphic Functions. Oxford: Clarendon Press, 1975.
- 4 Chiang Yikman, Gao Shian. On a problem in complex oscillation theory of periodic second order linear differential equations and some related perturbation results, Ann Acad Sci Fenn, 2002, 27:273-290.
- 5 Bank S B, Laine I, Langley J. Oscillation results for solutions of linear differential equations in the complex domain, Resulate Math, 1989, 16: 3-15.
- 6 Bank S B, Laine I. Representations of solutions of periodic second order linear differential equations, J Reine Angew Math, 1983, 344: 1-21.
- 7 Valiron G. Lectures on the General Theory of Integer Functions, New York: Chelsea, 1949.
- 8 Gao Shian. A result concerning the complex oscillation for periodic second order linear differential equations of transcendental type, Math Appl, 2002, 15(2): 85-88.
- 9 Bank S B, Langley J. Oscinallation theorems for higher order linear differential equations with entire periodic coefficients, Comment Math Univ St Paul, 1992, 41: 65-85.
- 10 Yang L. Value Distribution Theory and It's New Researches, Beijing: Science Press, 1982.
- 11 Gao Shian. A further result on the complex oscillation theory of periodic second order linear differential equations, Proc Edinburgh Math Soc, 1990, 33: 143-158.

School of Math. Sci., South China Normal Univ., Guangzhou 510631, China.