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PERTURBATION RESULTS OF SECOND ORDER LINEAR
DIFFERENTIAL EQUATIONS WITH PERIODIC COEFFICIENTS

Huang Zhibo Chen Zongxuan

Abstract. Two perturbation results on the linear differential function f~ + II(z2)A(z)f =0 are
obtained, where 1 (z) and A(z) are periodic entire functions with period 27i and o¢(II) < oc(A).

81 Introduction

The standard notation from Nevanlinna theory is used in this paper(see [1-3]). In addition,
we use the notation o(f) and A(f) respectively to denote the order of growth and exponent of
convergence of zeros for a meromorphic function f. The following results were proved in [4].
Theorem A. Let A(z) = B(e?), where B(¢) = g1(1/¢) + ¢2(¢), g1 and go are entire functions
with go transcendental and o(g2) not equal to a positive integer or infinity, and ¢, arbitrary.
(i) Suppose o(g2) > 1.

(a) If f is a non-trivial solution of
F AR F=0 (1.1)
with A (f) < o(g2), then f(z) and f(z + 27i) are linearly dependent.
(b) If f1 and f; are any two linearly independent solutions of (1.1), then A.(f1f2) > o(g2).
(i) Suppose o(g2) < 1.
(a) If f is a non-trivial solution of (1.1) with A.(f) < 1, then f(z) and f(z + 2wi) are linearly
dependent.
(b) If f1 and f, are any two linearly independent solutions of (1.1), then A.(f1f2) > 1.

We remark that the conclusion of Theorem A is yet valid if we assume o(g1) is not equal
to an integer or infinity, with g arbitrary and B(¢) = ¢1(1/¢) + ¢2(¢). In this case when ¢;
is transcendental with its order not equal to an integer or infinity and gs is arbitrary, we need
only consider B*(n) = B(1/n) = g1(n) + g2(1/n), g1 in 0 < |n| < 400, = 1/C.

Theorem B. Let g({) be a transcendental entire function and its order be not a positive integer
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and infinity. Let A(z) = B(e?), where B(¢) = g(1/¢)+X%_,b;¢’ and p is an odd positive integer,
then A(f) = +oo for each non-trivial solution f of (1.1). In fact, the stronger conclusion

log™ N(r, f) # o(r) (1.2)
holds.

82 Main results

Suppose (1.1) admits a non-trivial solution that has a finite e-type exponent of convergence
of zeros. If II(z) is a periodic entire function with period 27i and o.(II) < o.(A), what can
we say about the e-type exponent of convergence of zeros for any two linearly independent

solutions of the equation

FrHH(2)A(z)f =07 (2.1)
A perturbation result for differential function
4 (A) + H(2))f =0 (2.2)

where the coefficients of (2.2) are not necessarily periodic is given in [5], and a perturbation
result of (2.2) where the coefficients are periodic is given in [4]. We answer the above problem
based on the method used in [4,5] coupled with the special properties of periodic coefficients.
Theorem 1. Let B(¢) = g1(1/¢) + g2(¢), C({) = g3, where g1,g2 and g3 are entire func-
tions of finite order such that o(gz2) is a positive integer, and o(g3) < o(g2). Suppose A(z) =
B(e?), II(z) = C(e*) and furthermore that (1.1) admits a non-trivial solution f with A.(f) <
0(g2) and that f(z) and f(z + 27i) are linearly independent. Then

(i) for any non-trivial solution h of (2.1) with Ac(h) < o(g2), h(2) and h(z+ 2xi) are linearly
dependent.

(ii) for any two linearly independent solutions hy and hg of (2.1), we must have A.(h1h2) >
(g2)-

We easily deduce the following result from Theorem 1.

Corollary. Under the assumption in Theorem 1, any two linearly independent solutions h;
and hg of (2.1) must have A(hi1hg) = +00.

Theorem B investigates the oscillation properties of any non-trivial solution of (1.1) with
B(¢) = g(1/¢) + ¥¥_,b;¢7 while p is an odd positive integer and o(g) is not a positive integer
and infinity. We now investigate perturbation problem of (2.1) precisely when o(g) is a positive
integer.

Theorem 2. Let g({) be a transcendental entire function of an integer order o(g), and C(¢) # 0
be an entire function with o(C') < o(g). Let A(z) = B(e*), where B(¢) = X_,b_;¢™7 + g(¢),
p is an odd positive integer and IT(z) = C(e*). Suppose (1.1) admits a non-trivial solution f
with A(f) < 400, then any non-trivial solution h of (2.1) must have A(h) = +o0. In fact, the

stronger conclusion (1.2) holds.
83 Preliminaries for the proofs of main results

The main tools that we use in this paper are Nevanlinna theory in 052,6} where Cop = C\{z:
|z| < Ry} and Valiron representation for functions analytic in O([)?], and the fact that if f; and f,
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are two non-trivial, linearly independent solutions of (1.1), then the product E(z) = f1(2)f2(2)

satisfies the differential equation

2 E'(z 2 E'(z
~4A() = 5~ (5E) +25RE (3.1)
where ¢ # 0 is the Wronskian of f; and f3 (see [1]), and
T(r,E) = N(r,1/E) + 3T(r, A) + O(logrT(r,E))  n.e. (3.2)

In general, we use “n.e.” to denote that an asymptotic relation holds except a set of finite
measure. Our argument actually depends on an analogous formula of (3.2) on the Valiron

representation of periodic functions.

In this paper, we use the following definitions!*®!.
Let A(z) be an entire function. We define
to be the e-type order of A(z), and also define
Ae(A) = TETOOM (3.4)

to be the e-type exponent of convergence of zeros of A(z). We shall have occasions to consider
the zeros of A(z) in the right-half plane only. In that case, we define the upper limit in (3.4) by
Aer(A) when we only count the zeros of A(z) in the right-half plane, and similarly, we define
Aer(A) to be the upper limit in (3.4) when we only count the zeros of A(z) in the left-half
plane.

Let B(¢) be analytic in 0 < [¢| < +00, hence we have a representation B(¢) = ¢g1(1/¢) +
92(¢), where both g¢1(¢) and g¢2({) are entire functions. Let A(z) = B(e®) = A1(z) + A2(z2),
where A;(z) = g1(e™*) and Ay(z) = g2(e®). Observe that the transformation ¢ = e* is a

one-to-one correspondence between the sets {z : —logp < Rez < logp, —7 < Imz < 7} and
{¢: p7! <[¢] < p}. By the periodicity of e*, we have
= <
pflrI%%SPIB(OI 771;232 |A(z)] < L dnax |A(2)]
A = B
,(1ogp+w)121%2§glogp+w,| (Z)| (pr)flné??‘g(cnpﬂ (<)|’

—nr<Imz<m

so deduce that
loglog max |B(Q)]

T p—1<I¢I<p
O¢ (A) = pEI-il:loo Tog p . (35)
max |B = max{ max |B({)|, max|B , i i i
From p71§|<|§p| (9] {\C\:p” 1B(C)] |<|:p| (O} this together with (3.5) yields
log log _max |B()]
0.(4) = Tin_ —— 22— — max{o (), o(92)} (3.6)

In particular, oc (A1) = 0(g1),0e(A2) = 0(g2).
Let us now turn to the discussion of zeros. Let n(D,1/F) be the number of zeros of F(z)
in the set D, then we deduce

n(p~' < <p,1/B(C)) =n ({_loig:flf;jiiogp},l//l(ﬁ)
< n({lz[ <logp+},1/A(2))
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5 <(logp—|—7r)—7T+1>n({—(logp—|—ﬂ') §Rez§10gp—|—ﬂ'},1/A(z))

—rm<Imz<mw

Thus

——logn({p~"<[¢|<p},1/B()
)\B(A) :Pginoo : (p logpp ) (3.7)
Similarly, we have
Aer(4) = lim logn({1<¢I<p}1/BQ)),
——logn({p~ ! ;
AeL(A) = pglfool gn({p Sh\é\fl} 1/B(O)

Thus Ac(A) = max{A.r(A4),\er(4)}.
If f is analytic in Cp, then [7] implies that

f(z) = 2"0(2)u(z), (3.9)

where n is an integer, ©(z) is analytic and non-vanishing on Cy U {o0}, and u(z) is an entire

(3.8)

function with u(z) = 7(2)e™®), the function 7(z) is a Weierstrass product formed from the
zeros of f in Cp, and h(z) is an entire function.
Letting Ry = 1, we may regard B(¢) to be analytic in C*, where C* := C'\ {z : |z| < 1}.

By (3.9) we have a similar representation

B(¢) = ¢"R(C)b(C), (3.10)
where n is an integer, R(¢) is analytic and non-vanishing on C* U {oo}, and b({) is an entire

function. From (3.10) we obtain
log log max |B(¢)|

olge) = T ——pr—— = Tim Resgipil = o(b(0)) (3.11)
Since the zeros of B(¢) and b(¢) coincide in 1 < |{| < 400, we deduce from (3.8) that
Ner(4) = A(B(O)). (3.12)

Suppose w(z) is meromorphic in Cy := {7z : Ry < |z| < +o0}. By a similar argument as in [7],
w(z) has a representation

w(z) = 2"0(2) f(2), (3.13)
where n is an integer, ©(z) is analytic and non-vanishing on Cp U {o0}, f is a meromorphic
function in C. Let T} (r,w) denote the Nevanlinna characteristic function [ for w(z) in Co,
which is defined by T (r,w) = m1(r,w) + Ni(r,w), where m;(r,w) = 5 0277 log™ |w(re'?)|dy,
and Np(r,w) is the counting function for the poles of w in Cy.

From (3.13) we deduce that

mq(r,w) = m(r, f) + O(logr), (3.14)
and Ny(r,w) = N(r, f). Thus
Ti(r,w) =T(r, f) + O(logr). (3.15)
Since T'(r, f) =T(r,1/f)+ O(1), so
Ti(r,1/w) =T(r,1/f)+ O(logr) = T(r, f) + O(logr) = T1(r,w) + O(log ), (3.16)

that is Ty (r, 1/w) = Ty (r,w) + O(logr). As in [1,6], we define the order of w in Cy by
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log T (ryw)

op(w) = lim =520

r——4o0

84 Proof of Theorem 1

Lemma 4.1, Let F(r) and G(r) are non-decreasing functions on (0, c0). If

(i) F(r) < G(r) n.ey;
or

(ii) F(r) < G(r), where r ¢ H U (0,1], H C (0,00) is a set that has finite logarithmic
measure.
Then for any constant a(a > 1), there exists a constant 79(ro > 0) such that F(r) < G(ar)
when r > rq.
Lemma 4.2, Let Ag(z2), A1 (2), -, Ax_2(2) be periodic entire functions with period 27i and
functions in e* when k > 2, and A;(z) satisfies T(r, A;) = of{T(r, Ag)} mne,j=1,2,--- k—2.
Assume f # 0 is a solution of equation w® + Ap_sw* =2 + ... + Agw = 0. If
(i) Ap is rational in e* and satisfies log™ N(r,1/f) = o(r), or
(ii) Ap is transcendental in e* and satisfies log™ N (r, 1/f) = O(r),
then there exists positive number ¢ and 1 < ¢ < k such that f(z) and f(z + ¢2ni) are linearly
dependent.
Proof of Theorem 1. (i) Let f be a non-trivial solution of (1.1) with A.(f) < o(g2), and
f(2) and f(z + 2mi) are linearly independent. Since A.(f) < o(g2) < +00, Lemma 4.2 implies
that f(z) and f(z 4 4xi) must be linearly dependent. Let E(z) = f(z)f(z + 2ni), then

E(z +2mi) = f(z 4 2mi) f(z + 47i) = e1 f(2) f(z + 271) = ¢1 E(2),

for some non-zero constant ¢;. Clearly E’(z)/E(z) and E”(z)/E(z) are both periodic functions
with period 27i, while A(z) is periodic by definition. Since (3.1) shows that E?(z) is also a
periodic function with period 27i, we can find an analytic function @(¢) in 0 < |[¢| < 400 such
that E%(z) = ®(e*). Substituting this representation into (3.1) yields

! ! 2 1"
B =5 4 -3 (%) +C5 (4.1
Since both B(¢) and ¢(¢) are analytic in C* := {{ : 1 < |[{| < 400}, the Valiron theory gives
their representation as

B() = ("R(O)b(C),  2(¢) = (" K1(O)o(<), (4.2)

where n and n; are some integers, R(¢) and K;({) are functions being analytic and non-
vanishing on C* U {oo} and b({) and ¢(¢) are entire functions. By (3.14) and the lemma on

logarithmic derivative in [10], we deduce from (4.1) that

mi(p,1/®) = ma(p, B) + O{log(plog T(p, &)} n.e. (4.3)
Since Ny(p, B) =0, (4.3) implies
Ti(p,1/®) = Ni(p,1/ @) + T1(p, B) + O{log(plog T (p, $))}. (4.4)
Applying (3.15)-(3.16) to (4.4) and using the fact that N1(p,1/®) = N(p,1/¢), we deduce
T(p,1/¢) = N(p,1/¢) + T(p,b) + O{log(plog T'(p, $))}- (4.5)

It is easy to see that A\e(f) = Ae(E) = Ac(E?). Since Ao(f) < 0(g2), 50 Aer(E?) < A(E?) =
Ae(f) < 0(g2). Asin (3.12), A(¢) = Aer(®) = Aer(E?). But o(g2) = o(b(¢)) by (3.11), hence
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A¢) < o(b(¢)). Notice that (4.5) satisfied by ¢ is an analogous formula to (3.2) satisfied by E.
It follows from (4.5) and Lemma 4.1 that o(¢) = o(b(¢)), thus A(¢) < o(¢). We know o(gz) is

P(Q) | where

a positive integer, so are (b(¢)) and o(¢(¢)). Thus we may rewrite ¢(¢) = m1()e
71(C) is an entire function, o(m) < 0 = 0(gz2), P({) = af? , and « is a non-zero constant.

Let us now suppose (2.1) possesses a non-trivial solution h(z) such that A.(h) < o(g2) but
h(z) and h(z+2mi) are linearly independent. Let F(z) = h(z)h(z+2i). By a similar argument
that we have applied to E(z) above, we conclude that there exists an analytic function ¥(¢) in

0 < [¢] < +o0 such that F?(z) = ¥(e?). Similarly, ¥(¢) has a Valiron representation
U(C) = (" K2 (Q)v(¢) (4.6)

in C*, where ngy is an integer, K2(() is analytic and non-vanishing on C* U {oc}, and () is
an entire function in C.
We now substitute F2?(z) = ¥(¢), with ¢ = e?, into (3.1) with A(z) replaced by II(2)A(z).
This yields
SCOBQ) = §+¢% 2 (%) ey, (4.7)
where ¢y is a the Wronskian of h(z) and h(z + 2i).

In a similar fashion of ¢(¢{) ,we have
AW) = Aer(F?) < Xe(F?) = Xe(h) < 0(g2) = o (b(C)).
We then apply a similar argument to (4.7) to obtain

T(p, ) = N(p,1/¢) + T(p,d) + O{log plog T'(p, )} (4.8)
As to (4.1) for (4.5), d(¢) is an entire function appearing in Valiron representation of

C(OB(C) = (" Ra(¢)d(C),

where functions Rg(¢) and d(¢) play the same role of corresponding functions in (4.2), and it
is easy to check that o(d) = o(b(()). It follows from (4.8) and Lemma 4.1 that o(¢)) = o(b(C)),
and thus A(¢) < o(v). Since o(g2) is a positive integer, so are o(b(¢)) and o(¢). Thus we may
rewrite 1(¢) = m(¢)e?(©), where m2({) is an entire function, Q(¢) = 8¢7, o(m) < o = 0(ga),
and ( is a non-zero constant.

Letting @(¢) = R1(€)eP© and ¥(¢) = R2(¢)e?©), where Ry(¢) = ("™ K1(¢)m(¢) and
R2(¢) = (" K2(¢)m2(¢), max{o1(R1),01(R2)} < 0 = 0(g2), and substituting them into (4.1)
and (4.7) respectively, we get

CQ /
ABQ) = pp GO+ P = (R 2R 4 2P
RH RI / 72 17
+C2(R1+2RP + P* 4+ P"), (4.9)
and
CQ R2 / 2R2 2 2
HICOBEQ) = g+ G2+ Q) SR + 2720 + Q")
R/I R/

+<2( Q +Q7+Q"). (4.10)



Huang Zhibo,et al. ~ PERTURBATION RESULTS OF SECOND ORDER LINEAR. - - 411

To multiple (4.9) by C(¢) yields

_ Ry / 3 Ry 2Ry | o2
—4C()B(() = WC(OﬂLC(R—ﬂLP)C(O—Z{(CR—l) +205 P + (P }O(C)
2 R/I 1 / /2 7
+¢ (R1 +2p PP AP )C(O- (4.11)
Subtracting (4.11) form (4.10) leads to
0= 727 C(C) — e + H(Q), (4.12)

where H(¢) is meromorphic function in C*. In fact, H({) is a differential polynomial in

%, % (€), P’, Q" and their derivatives. We can deduce from the definitions of Ry, Rz, C({), P, Q
that o1 (H) < 0 = 0(g2). Rewrite (4.12) as
e*P + Hle*Q = HQ, (413)
where Hi and Hy are meromorphic functions in C*, with
_ _GR 1 _ _BH(Q
TR OO T @)
and max{coy(H1),01(H2)} < o(ga)-
Differentiating (4.13) yields
eP 4 MO Mg M (4.14)

Using (4.14) to eliminate e =% from (4.13) ylelds

Hze @ = Hy, (4.15)
where Hy = H] + (P’ — Q')H; and Hy = HyP’ + H) are meromorphic functions in C* with
o1(Hs3),01(Hy) < 0(g2). Thus Hy = 0 , i.e. Hy = cze™ ', where c3 is a non-zero constant,
from a simple order consideration in (4.15). We can obtain o1(Hz2) = ¢ = o(g2). This is a
contradiction to o1(Hz2) < o(g2). Hence h(z) and h(z + 27i) must be linearly dependent.

(ii) Suppose (2.1) possesses two non-trivial solutions h; and ho that are linearly independent
and Ac(hih2) < o(g2), then Ac(hj) < o(g2) for j = 1,2. Part (i) implies that h;(z) and
hj(z+2mi) are linearly dependent for j = 1,2. Let E(2) = f(z) f(z+2ni) and F(z) = hi(2)ha(z),
then F(z 4 27i) = ¢4 F(z) for some non-zero constant c¢4. Applying a similar argument to F(z)
and F(z) as in part (i) yields o1 (Hz2) = o(g2). This is a contradiction. Hence A.(h1h2) > o(g2).
This completes the proof of Theorem 1.

85 Proof of Theorem 2

Lemma 5.1 11, Let A(z) = B(e®*) ba a periodic entire function with period w = 27i/a, and
be transcendent in €**, i.e., B({) is transcendent and analytic on 0 < || < +oo. If B(¢) has a
pole of odd order at { = oo or ¢ = 0 (including those which can be changed into this case by
varying the period of A(z)), and (1.1) has a solution f # 0 which satisfies condition

logt N(r,1/f) =o(r) as 7 — +oo, (5.1)
then f(z) and f(z 4+ w) are linearly independent.

Proof of Theorem 2. Suppose (1.1) possesses a non-trivial solution f with A(f) < +oo,
hence A.(f) = 0 < o(g) by definition (3.4). Thus, Lemma 5.1 implies that f(z) and f(z 4 2mi)
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are linearly independent solutions of (1.1), and f(z) and f(z + 2ni) satisfy the hypotheses of

Theorem 1. Suppose (2.1) admits a non-trivial solution h(z) with A.(h) < o(g), then Lemma

5.1 again implies that h(z) and h(z + 27i) are linearly independent. Part (ii) of Theorem 1
shows that Ae(h(2)h(z 4 271)) > o(g) > 0. So Ae(h) = Ae(h(2)h(z + 271)) > 0, and thus (1.2)

holds. This completes the proof of Theorem 2.
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