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Separation properties for self-conformal sets
by

YuaN-LING YE (Hong Kong and Guangzhou)

Abstract. For a one-to-one self-conformal contractive system {w; };,":1 on R? with
attractor K and conformality dimension a, Peres et al. showed that the open set condition
and strong open set condition are both equivalent to 0 < H*(K) < co. We give a simple
proof of this result as well as discuss some further properties related to the separation
condition.

1. Introduction. Let Uy C R? be a bounded open set. Let w; : Ug — Uy
(j = 1,...,m) be contractive maps and suppose there exists a nonempty
compact subset X C U such that w;(X) C X for each 1 < j < m. Then
there exists a compact subset K C X such that K = L, w;(K). We
say that {w;}7", satisfies the open set condition (OSC) if there exists a
nonempty bounded open set U C Uy such that

wj(U) CU and wz(U) N ’tUj(U) =0 for: £ 1.,

Such a U is called a basic open set for {w;}7 ;. If moreover U N K # 0,
then {w;}7.; is said to satisfy the strong open set condition (SOSC). In [S],
Schief made use of an idea of Bandt [BG] and showed that for similitude,
the two conditions are equivalent, and furthermore they are equivalent to
0 < H*(K) < oo where « is the similarity dimension of K.

Recently, Peres, Rams, Simon and Solomyak [P] extended Schief’s the-
orem to self-conformal maps. A simple proof was also given by Lau, Rao
and the author for the equivalence of the OSC and SOSC [L]. In a private
communication, Peres asked if there is a short proof of the equivalence to
0 <H*(K) <oo. In this note we answer his question affirmatively. The main
idea and some of the proofs are already in [L] and [FL]; we will modify them
to fit our purpose. In [LX] Lau and Xu considered the boundary dimension
of self-similar sets. We extend some of their results to self-conformal maps.
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For one-to-one contractive self-conformal IFS {wj}f‘:b we define the
conformality dimension of the IFS to be the (positive) number a such that
the Ruelle operator T, : C'(K) — C(K) defined by

Taf(z) = Y ()| f (wj(=))
j=1

has spectral radius 1 [FL]. We let H® be the a-Hausdorff measure.

We prove Theorem 1.1 below by constructing a basic open set U which
satisfies both the SOSC and dimyg(K \ U) < a. The key to the proof is
Lemma 3.4. Furthermore we remark that in the previous considerations of
self-conformality, it was additionally assumed that the open set U in the
OSC is connected (see e.g. [MU], [P]); we will see that this assumption is
redundant (Lemma 2.1 and the remark there). Our basic results are:

THEOREM L.1. Let {w;}7", be a one-to-one self-conformal contractive
IFS with {|w}(z)|}]L, satisfying (2.1) and the Dini condition. Then the
following are equivalent:

(i) {w;}jL, satisfies the OSC.
(ii) {w;}jL, satisfies the SOSC.
(i) 0 < H2(K) < oo.

THEOREM 1.2. Let {w;}T2; be as in Theorem 1.1 and satisfy the OSC.
Then there exists a basic open set U such that dimy(K \ U) < a.

2. Preliminaries. Let {w;}7"; be self-conformal on Uy (i.e. for each j
and each x € Up, wj(z) is a self-similar matrix and |w}(-)| is continuous).
We assume that there exists a nonempty compact set X such that X C Uy,
and for each 1 < j < m, w;(X) € X, w; is one-to-one on Uy and |wj ()] is
Dini continuous on Uy with

(2.1) 0 < inf |w§(az)| < sup |w;(a:)| <1 foreach1<j<m,
xelp zeUy

where |w;(z)| = |det w; (z)|*/¢ is the operator norm of the matrix wi(z)
on R% Enlarging X to Xy C Up by taking a d-neighborhood, we can show

easily from the contractiveness of w;’s that there exists &’ such that
U wy(Xo) C Xy forany k >k
|J|=k

where J = j1 ... jk, 1 < 5; < m, wj = wj, ©...owj;, . Hence we may assume
without loss of generality that X° = X and B(K,d) € X° for some § > 0
(B(K, ) denotes the open d-neighborhood of K).
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Weset 7 ={J=j1...0n: 1 <j; <m,n € N}, and for any J € J
define

Kj=wy(K), ryj= inf |w)(z)|, Rs= sup |w)j(z).
$EU(} -'l'v'GUO

LEMMA 2.1. Suppose X and {w;}7L, are defined as above.

(i) There ezists a c; > 1 such that
(2.2) Ry<ery foranyJeJ,
(2.3) ctriry <rpy<cirpry  forany I,J€ J.

(i) There ezist ca>c1 and § > 0 such that for z,y,z€ X with |z —y| <4,
|wy(z) —wy(y)]

< colw’y(z or any J € 7.
— 'y (2)  for any

24 'lwi(z)] <

(iii) There exist c3 > co and ko such that for any xz,y € X,
(25)  |wi(z) —ws)| S esrslz—y|  for any J € T with |J| > ko.

Proof. The proof of (i) and (ii) is in [FL, Lemma 2.3]. We include the
proof of (ii) for completeness. For any x € X, there exists 6, > 0 such
that B(z,8,) C Up. Since X is compact, there exists § > 0 (the Lebesgue
number) such that for any z,y € X, if |z — y| <4, then z,y € B(z/,d,/) for
some z' € X. For such z,y € X, we have w;(z), w;(y) € B(y',d,) for some
y' € X. Then the self-similar property of w; implies that

(2.6) lwr(z) —ws(y)| < Rilz —yl.

On the other hand, let us(-) be the inverse of wy on B(y/, d, ) Nw (B (z', d5)),

ie.,

ug(z) == wj'(z) for any z € B(y,6y) Nwy(B(z',6,)).

Then
Rt < |uf(z)| <r7'  for any z € B(y,6y) Nwy(B(x', ).
By the self-similar property of w(-), we deduce that B(y', 6, )Nws(B(z', 8,1))
is convex connected, hence similarly to (2.6), we have
g (ws(2)) —us(ws ()] < r7tlws(z) —wiy)l

Consequently, rjz = y| < [wi(z) — ws(y)| < Rs|z — y|. This together with
(2.2) implies (ii).

(iii) follows directly from the choice of § and (ii). m

To make use of the local connectedness of X, we take 0 < & < 2_10515.
Then 2c3e < 4, and hence by the assumption on X, we have

(2.7) B(K, c3¢) C X.

For J € J, let
Gy = wy(B(K,e)).
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Consequently, by (2.7) and (2.4), we have for any z € K,
(2.8) B(wy(z),c5 ery) C wy(B(x,e)) € B(wy(z), caery).
It follows that

(2.9) B(Kj,c3lers) = U B(wy(z), ¢y ery)
zeK

Gy = |J wi(Bz,e)) € | Blws(z), cers)
€K €K
= B(KJ,CQET'J).

We remark that in [MU] and [P] the connectedness of X was used to
apply the mean value theorem so as to deduce (2.8) and (2.9); the above
argument shows that the local connectedness of X is sufficient. Hence we
can study separation properties without assuming the connectedness of Uy
so long as we regard the relevant sets as unions of subsets whose diameters
are less than 4.

For 0 <b <1, we let

Ay ={J =J1- Jn: i go <OSTH o}
As in [L], our most crucial difference from [S] and [P] is the following in-

ductive way of defining an index set A(J),J € J: Let kg be as in Lemma
2.1(iii). For J with |.J| = ko, we define

A(J) == {I € AdiamGJ KNGy # @}
Supposing A(J) is defined, for any 1 < j < m, we define A(jJ) = AUB
where
A={jI:I e A(J)}, B:{IEAdiamGjJ 1i1 # j and K1 NGy # 0}
(Note that in [S], the A(J) is defined as {I € Agiamc, : K1NGy # 0}.) It is
easy to see from the construction that each I € A(J) is of type either A or

B, and K;NGy # 0; also K7 and K are comparable in size by the following
lemma.

LEMMA 2.2. Suppose {w;}JL; is as in Lemma 2.1. Then there exist ki

and ¢y > 0 such that ch <ryfrr <cq forall I € A(J) and J € T with
|J| > k1.

Proof. The idea is in [L, Lemma 3.1]; we modify it to fit our purpose.
Let k1 > kg be such that

min{|I| : I € A(J) and |J| > k1 } > ko.
For any I € A(J) and J € J with |J| > ki1, we consider two cases:
(i) If 41 # 41, by the construction of B, we have I € Agiamc,- Then
(2.10) rr <diam Gy <7y 4, < e Lrp
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where r = minjcj<m{r;}. As e < 271¢;'6 < 4, it follows from (2.4) that
diam Gy > 02_1571]. Hence
(2.11) ¢y lery < diam Gy < crrlry.

Also by (2.9), we have diam Gy < 2cyer; + |K;7|. Then by (2.10) and (2.5),
it follows that

(2.12) rr <diam Gy < c3(2e + |K|)ry.
Hence (2.11) and (2.12) imply that there exists @ > 0 such that
(2.13) a~t<ry/r; <a.

(ii) If i1 = 71, we write
=g gidmedn=gc0d I=g it = g Gl
where ji11 # d141. Then by the construction of A, we see inductively that
I' € A(J') and by (2.13), a™! < ry/rp < a. Together with Lemma 2.1(i),
this implies that
(ac})™ < ry/rr < adl.

If we let ¢4 = ac?, then the lemma follows from the conclusion of the two
cases. m

We remark that for fixed Jy € J, the construction of the set .4 implies
trivially that
A(GI) 2 {jI: T € A(Jy)}, j=1,...,m.

The key to proving the SOSC is to find Jj such that equality holds (Lem-
ma 3.4 below). In this case the set B is empty.

3. The proof of the main results. We need a few notations and
lemmas. For any two subsets F, F' in R¢, we define
D(E,F)=inf{lz—y|:z€ E, y € F};
d(E,F)=inf{e: E C B(F\e), F C B(E,¢)}.
LeEMMA 3.1 [FL, Lemma 2.8]. Let w be conformal and invertible, let D

be a Borel subset in the domain of w, and 0 < H*(D) < co. Then we have
the following change of variable formula:

H*(w(D)) = | |/ (z)|* dH*(z).
D

LEMMA 3.2. Let {w;}TL, be as in Theorem 1.1. Suppose 0 < H*(K)
< 00. Then

HYKrNKj)=0 for any incomparable I,J € 7.
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Proof. Since T, has spectral radius 1, by [FL, Theorem 1.1], there exists
0 < h € C(K) such that h(z) = 377, |wj(z)|*h(w;z). Then

Z | hix)dHo(x | h@)dn*(z) = | h(z) dH ()

j=1K; U;anj K
SZ|w )| ®h(w;z) dH® (m=ZS z) dH*(z).
K j=1 =1 K;

(The last equality follows from Lemma 3.1.) This implies that H®(K; N K;)
= 0 for any i # j. It follows immediately that H*(K; N Kj) = 0 for any
incomparable I,J € J. =

LEMMA 3.3. Let {w;}7L; be as in Lemma 3.2. Then there exists oo > 0

such that for any L € J,
lwr(-) = ws()llexy = dorr for any I, J € A(L) with I # J.

Proof. Since 0 < H*(K) < oo, there exists an open set U such that

K CUcX and
0 & HEE) < HAE § 41+

Let c¢; and 0 be as in Lemma 2.1 and let 0 < n < 2”101_0‘. There exists an
open covering {V;}™; of K such that

(3.1) Kcv:=JvcUu, ¢&:=DKV)<s,
i=1
(3.2) 0 < HY(K) < HUV) <> [Vi|* < (1 +mH*(K).
=1

For any I,J € A(L), assume without loss of generality that H*(K;) <
H*(K ). Then for any given e satisfying c{n < € < 1, we have
(3:3) eH*(Kr)'< H*(K ).
We claim that d(K;, K;) > &'ry. Otherwise, by (3.1) and Lemma 2.1(ii),
we have D(Ky,w;(V®)) > §ry, and then K; C wr(V). Hence by (3.3) and
Lemma 3.2, we have
(1+e)H*(K[) < H*(K) + H*(K ) = HY(Kr U K ;) < H*(wr(V)).
This together with (3.2) implies that
er¥H*(K) < eH*(K) < H*(wi(V \ K)) < (ar))*H*(V \ K)
< (ClTI) T}HQ( )

(The first and third inequalities follow from Lemmas 3.1 and 2.1(i).) Then
e < ¢f'n, which contradicts the choice of ¢. The claim is proved, and the
lemma follows. =
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LEMMA 3.4. Let {w;}7., be as in Lemma 3.2. Theny := sup|y >y, {1A(L)
< oo. If Jo € T is such that |Jo| > k1 and §A(Jy) = v, then

(3.4) ATy ={IJ:Je€ A(Jy)} forall I J.

Proof. Let c3, ¢4 and dp be the constants given in Lemmas 2.1, 2.2 and
3.3 respectively. Let & = (3czcs) 8. We can find a finite set Z ¢ K
whose ¢"-neighborhood contains K. For any L € J with |L| > k; and for
all different I,J € A(L), by Lemma 3.3, there exists z € K such that
|wr(z) —wy(x)| > dorr. For that x there exists z € Z such that |z — z| < §;
then by (2.5) and the choice of k; (see the proof of Lemma 2.2), we have

lwr(z) —wr(z)| < %JQTL and |wy(z) —wy(z)| < %6{37"15.
It follows that for any different I,.J € A(L), there exists some z € Z such
that
(3.5) lwi(z) —wy(z)| = %5@’@.
For each z € Z, set
P,(L)={I € A(L) : 3J € A(L) such that (3.5) holds}.
Hence (3.5) implies that
A(D) = | PAL).
z€Z
To prove sup|z|>y, §4(L) < oo, we observe that for each z € Z, the sets
{B(wi(z),§éorr) : I € P,(L)}
are disjoint by (3.5) and are contained in B(GL, diam K; + %6071) by the
definition of A(L). By Lemma 2.1(iii) and Lemma 2.2, there exist ¢ > 0 (in-
dependent of L) and € K such that B(GL, diam K|+ %507',5) C B(z,crp).

By a simple volume argument, we deduce that there exists an ¢ (independent
of L) such that max,cz 4P, (L) < £. Then

4A(L) < 47 - maxtP,(L) < £-4Z.
Z
We conclude that v = sup|», $4(L) < co. Hence there exists Jo such that

|Jo| > k1 and §A(Jo) = -
To prove (3.4), we have remarked after the definition of A(J) that

AGI) 2T T€ AU}, j=1,...,m.

On the other hand, the choice of Jy implies that §{IJ : J € A(Jy)} = .
Thus the definition of v implies that §A(I.Jy) = 7 also and (3.4) follows. m

Proof of Theorem 1.1. Tt is obvious that (ii) implies (i). That (i) implies

(iii) is shown in [MU] and [FL]. We have to prove (iii)=>(ii). The proof needs

only a small modification of [S] and is the same as in [L]; we include it here
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for completeness. Let Jy € 7 be as in Lemma 3.4. For any fixed 1 </ <m
and J = j; ...Jn € J with j; # [, we consider the family

Ki={K,:Le AdiamGJJO with Iy = [}
where [; is the first element of the multiple index L. Then K is a cover of K.
Since j1 # l1, (3.4) implies that L & A(JJp). Then by the construction of
B, KL NGy, = 0. Hence by (2.9), we have D(Kp, Kjj,) > ¢ tery,, which
implies

(3.6) D(K;,Kyj,) > c;teryy, for 1 # j1.
Now we let G = wy(B(K,2 !¢, %)) and
U= U G’}JO‘
JeJ

We claim that the U satisfies the condition of the SOSC. Indeed, U is a
bounded open set, U N K # () and

wi(U) = |J w;(G35) = U Gjan CU.
JeJ JeJ
Now we prove that

wi(U)Nw(U) =0 for i # j.

For otherwise, there are I, J such that Gy ; NG}, # 0. We assume i1, =
T;7Jo- Let y be in the intersection; then there ex1st y1 € Kijg, and y2 € Ky,
such that

cyle

1 2
d(y,yl) <cg- EE'T'@IJO pid T”"MJO:

d(y,y2) <ca- % € Tjidy S %Tim-
Then d(y1,y2) < c.glsn-yo. Hence
D(Kirg, Kj) < 5 "erirs,,
which contradicts (3.6). This completes the proof. m
LEMMA 3.5 [FL, Theorem 2.9]. Let {w;}72, be as in Theorem 1.1 and

satisfy the OSC. Let v = H®| k. Then v is an invariant measure for Ty, i.e.,
T2y = b,

Proof of Theorem 1.2. By assumption and Theorem 1.1, we have 0 <
H*(K) < oo. We recall the proof of Theorem 1.1 and let U be as constructed
there. To prove dimg (K\U) < a, let u = H*(K)~'H*. Then by Lemma 3.5,
i is an invariant probability measure of T, i.e.,

(3.7) n= Z j@)N ) 0wy
J=1
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Let k := |Jp|. Then by Lemmas 2.1 and 3.1, we have

(3.8) w(Kg) > eors;

for any L € 7,

(3.9) w(Krge) = H(K) ™ | Jwh (wrz)[®w), (2)|* dH (z)
K

2T, = o g u(Kr).

For any integer n, let

n—1

Ua=1) | &%

€=0 | J|=ke

Then U, C U. Let
Tm)={j1- Jkn: 1 < jGi <m},
En:{L=ll...lkn Ej(n):lkg+1...lkg+k%ufo VOSE<TL}.

For any J with 0 < |J| = k£ < kn, we deduce from K = Ui, w;(K) that

(3.10) KJJO:UJJJU(K)Z U KJJDJI.
[J'|=k(n—1)—|J|

Then
n—1 n—1
311) KNUCE\U,=K\{J |J &icx\{J U Kz
=0 |J|=kt £=0 | J|=k¢
n—1
= ﬂ ﬂ ﬂ K.?J'GJ’ - U K.
£=0 |J|=kt |J'|=k(n—1)—|J| Let.

We need to estimate the value of H*(|J, ¢, Kr). For this we will prove
inductively that

(3.12) Z w(Kp) < (1—cr%r§,)*  for any n.
Lely

Indeed, by Lemma 3.2, we have u(K; N Kjy) =0 for any I,J € £,, with
I # J. This together with (3.8) implies that

> ukn) =pu( U Ki)=1-u(Ky) <1-cor5,.
Lel, f;ﬁjﬁ

Assume that

D mKL) < (1—erors)m.
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Since Z|Jt=k w(Kry) = p(Kr), we have

Z w(Kr) = Z Z M(Kry) — Z W(KL,)

LECn+1 Lel, IJF:]C Leln
= > wEL)~ > u(Kes)
Lel, LEFy
< D wEr)—®rg, Y p(Kz) by (3.9)
Lel, Leln
=1 —er%) > uKr) < (1 —eg®r5)A — 7 ors,)"
Leln

=(1- cl_“r%)n“.

Let 6, := max{diam K, : L € £,} and r = minj<j<m{r;}. Take

log(1 — ci‘o‘r?o)

2 7= klogr

Then 3 < a. Set ¢4 = (cs diam K)P. Then for large n, we have

HE \U) <) (| Ki) € 3 (@iamKp)? by (310)

Leln Lel,
< Z (esry, diam K)P = ¢4 Z frg =y Z ’I‘f_a?"% by (2.5)
LeLl, Leln Leln
<4 (Tnk(ﬁ*a) Z M(KL)) < eg(r*BN(1 — 9 )" <y by (3.12).
LeLl,

Since lim,,_ o 0, = 0, we obtain H?(K \ U) < ¢4 < 00, hence dimp (K \ U)
<G =

COROLLARY 3.6. Let {w;}7; be as in Theorem 1.2. Then
dimp(w;(K) Nw;j(K)) <a  fori#j.

Proof. Let Jy and 8 be as in the proof of Theorem 1.2. Using (3.12),
we can show similarly to [LX, Theorem 1.6] that dimg(w;(K) N w;(K))
<f<anm

THEOREM 3.7. Let {w;}7L; be as in Theorem 1.2. If there is a basic
open set U such that U\ U;n:l w;(U) # 0, then dimp K < d.

Proof. Suppose that dimg K = d. Since {w;}72; satisfies the OSC, we
know from [FL, Theorem 2.7] that Tj; has spectral radius 1, i.e., @ = d. Since
U\UjL; w;(U) is an open subset of R?, the proof will be finished if we can
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show that H(U \ Ujeq w; (U)) = 0. For this, let

(3.13) V=U\|Jw(D).
j=1
We claim that
(3.14) w(V)Nwy(V)=0 VI,JeJ, I#J

In fact, for I, J comparable, we have J = [lj. Since U is a basic open set,
we have

(3.15) ’LUZ(U) cU and wz(U) ﬂ’LUj(U) = ED, Vi %j
Therefore wy, (V) C UL, w;(U), and thus wy, (V) NV = . Hence
wr(V)Nws(V) Cwr(V Nwy,(V)) = 0.

If I, J are incomparable, let I=4; ...%,, J=J1...J; and r=min{k : i #ji }.
Define Iy =43 ...i,—1. By (3.13) and (3.15), we have

wr(V)Nw(V) C wr, (w;, (U) Nw;, (U)) = 0.

This completes the proof of the claim.
By (3.14) and Lemma 3.1, we have

316) > § > [uh@)|dHi @) =D Y HYw (V)
n=1V |J|=n n=1|J|=n
_ Hd( U wJ(V)) < HYU) < oo.
Jeg

On the other hand, for any fixed yp € K and any z € X, by Lemma 2.1(i),
e s (yo)l? < [y ()|,

Hence

e Z |w's (yo)|* < Z lwh(z)?, =zeX.

|J|=n |J|=n
Since a = d, it follows from [FL, Theorem 1.1] that
. / d __ : n
hrgn Z |w;(:)|“ = h(-) uniformly on K
|Jl=n
where 0 < h € C(K) is the 1-eigenfunction of the Ruelle operator T;. Then

e h(yo)HA(V) = e - lim § ) Jwly (o) |? dH(x)

o liminfg Z [w'y (x)|* dHY ().
" V|J|=n
By (3.16), the right side is 0, hence H4(V) = HHU \ UT:I w;(U)) =0. u
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COROLLARY 3.8. Let {w;}7t, be as in Theorem 1.1. If a = d and
HAK) > 0, then K° # () and dimyg 0K < d.

Proof. Let U be the basic open set constructed in the proof of Theo-
rem 1.1. By assumption and Theorem 3.7, we have Hd(U\U;nzl w; (U)) = 0.
Then

U= U w; (T).
j=1

By the uniqueness of the invariant set K, we have K = U, and then K° D
U # (. In view of the proof of Theorem 1.2, we have

dimyg 0K < dimg(K\U) <d. =
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