SEPARATION PROPERTIES FOR SELF-CONFORMAL SETS

YUAN-LING YE

Abstract

For an one-to-one self-conformal contractive system {w;}7., on R? with attractor K
and conformality dimension «, Peres et al showed that the OSC and the SOSC are
both equivalent to 0 < H*(K) < oo. We will give a simple proof of this result as well
as some further consideration of the properties related to the separation condition.

1. Introduction

Let Uy C R? be a bounded open set. Let w; : Uy — Uy (j = 1,2,--- ,m) be
contractive maps and there exists a nonempty compact subset X C U, such that
for each 1 < j < m, w;(X) C X. Then there exists a compact subset X C X such
that K = [J;_, w;(K). We say that {w;}7; satisfies the open set condition (OSC)
if there exists a nonempty bounded open set U C U, such that

w;j(U) CU and wi(U)mwj(U):(Z) for i # j.

Such U is called a basic open set of {w;}7L,. If the above U satisfies further UN K #
0, then {w;}7, is said to satisfy the strong open set condition (SOSC). In [S], Schief
made use of an idea of Bandt [BG| and showed that for similitude, the two conditions
are equivalent, and furthermore they are equivalent to 0 < H*(K) < oo where « is
the similarity dimension of K.

Recently, Peres, Rams, Simon and Solomyak [P]| extended Schief’s theorem to
self-conformal maps. A simple proof was also given by Lau, Rao and the author for
the equivalence of the OSC and the SOSC [L]. In a private communication, Peres
asked if the short proof can be used to prove the equivalence to 0 < H*(K) < oc.
In the note we answer his question positively. The main idea and some of the proofs
are already in [L] and [FL], we will modify them to fit our purpose. In [LX] Lau
and Xu considered the boundary dimension of self-similar set. Some of their results
are extended to the self-conformal maps.
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For one-to-one contractive self-conformal IFS {w;}™, we define the conformality

=0
dimension of the IFS to be the (positive) number « such that the Ruelle operator

T, : C(K) — C(K) defined by

Z|w ’fwj ))

has spectral radius 1 [FL]. We let H® be the a-Hausdorff measure.

We prove following Theorem 1.1 by constructing a basic open set U satisfies both
of the SOSC and dimpg (K\U) < a. The key of the proof is Lemma 3.4. Furthermore
we remark that in the previous consideration of the self-conformality, an additional
connectedness assumption is added to the open set U in the OSC (see e.g. [MU],
[P]), we will see that the assumption is redundant (Lemma 2.1 and the remark
there.) Our basic results are

Theorem 1.1. Let {w;}7L, be one-to-one self-conformal contractive IFS with {|w}(z)|}72,

satisfies (2.1) and the Dini condition. Then the followings are equivalent:
(1) {w;}je, satisfies the OSC.
(i) {w;}7, satisfies the SOSC.
(ili) 0 < HYK) < oo.

Theorem 1.2. Let {w;}7L, be as in Theorem 1.1 and satisfy the OSC. Then there
exists a basic open set U such that

dim z(K\U) < a

2. Preliminaries

Let {w;}72, be self-conformal on Uy (i.e. for each j and each x € Uy, w;(a:)
is a self-similar matrix and w/(-) is continuous). We assume that there exists a
nonempty compact set X such that X C Uj, and for each 1 < j <m, w;(X) C X,
w; is one-to-one on Uy and w’'() is Dini continuous on Uy with

0 < inf |wj(z)] < sup [wi(z)] <1 foreach 1<j<m (2.1)
z€lUo zelUy

By enlarging X to Xy C Uy by a d-neighborhood, we can show easily from the
contractiveness of w;’s that there exists k&’ such that

U wy(Xo) € Xy for any k > K
\J=k
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where J = jijo - ji, 1 < 3 <m, wy = wj, ow,, o---owj,. Hence we may assume
without loss of generality that X° = X and B(K,d) C X° for some § > 0 (B(K, )
denotes the open §-neighborhood of K).

We will use the notation J = {J = j1jo--Jn : 1 < j; < m,n € N}, and for any
J € J define

K;=w;(K), rj = inf [u(z)|, Ry = sup |w;(z)|.
reX zeX

Lemma 2.1. Suppose X and {w;}7., are defined as above. Then
(1) there exists a ¢; > 1 such that

Ry <ciry forany JeJ (2.2)
and
ciltriry <rpp<erpry forany I, J € J; (2.3)
(ii) there exist ca > ¢1 and § > 0 such that for x,y,z € X, |x —y| <0,
jwy(x) —w,(y)|

ey Hwy(2)] < P— < alwh(2)|  forany J e J; (2.4)
(iii) there exist c3 > co and ko such that for any x,y € X
lwy(x) —wys(y)| < ecsrgle—y| forany J €T with |J| > k. (2.5)

Proof. The proof of (i) and (ii) is in [FL, Lemma 2.3]. We will include the proof of
(ii) here for completeness. For any = € X, there exists d, > 0 such that the d,-open
ball B(z,d,) C Up. Since X is compact, there exists § > 0 (the Lebesgue number)
such that for any x,y € X, if |x — y| <, then z,y € B(a2/,6,s) for some 2’ € X.
Then we can apply the mean value theorem to show that for |z —y| < §

lwy(z) —wy(y)| = [w) (€)= —y)|,

where ¢ is in the line segment joining x and y. The self-similar property of w;(+)
yields

(@) —ws(y)| = [wi(©)]l(z = y)l. (2.6)
This together with (2.2) implies (ii).
(iii) follows directly from the choice of the above ¢, (2.6) and (ii). W

To make use of the local connectedness of X, we take 0 < & < 27l¢y 1§, then
2c3e < 0, and hence by the assumption on X, we have

B(K, cse) C X. (2.7)

For J € J, let
GJ = ’LUJ(B(K,&)).
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Consequently by (2.7) and (2.4), we have for any = € K,

B(wy(z),c3'ery) Cwy(B(z,e)) C B(wy(z), caery). (2.8)
It follows that

B(Kj,cylery) = U B(wy(z),c5'er;) C Gy = U wy(B(z,¢))

zeK zeK
C U B(wy(x), coery) = B(K, cery). (2.9)
rzeK

We remark that in [MU] and [P] the connectedness of X was used to apply the
mean value theorem so as to deduce (2.8) and (2.9); The above argument says that
the local connectedness of X is enough to deduce them. Hence we can study its
separation properties in the absence of the connectedness assumption on Uy so long

as we regard the concerned sets to be union of subsets whose diameter are less than
J.

For 0 < b < 1, we let
Ny={J =1 Jn: Tjojy <bZ<T5 5, )

As in [L], our most crucial difference from [S] and [P] is the following inductive way
to define the index set A(J),J € J: Let ko be defined as in Lemma 2.1(iii), for J
with |J| = ko, we define

A(J) ={I € Agimg, : KiNG; # 0D}
Suppose A(J) is defined, for any 1 < j < m, we define
A(jJ)=AUB
where
A={jI:T€AJ)}
and
B ={I € Agiama,, : i1 # j and K; N Gj; # 0}.

(Note that in [S], the A(J) is defined as {I € Agima, : K1 NGy # 0}.) Tt is easy to
see from the construction that each I € A(J) is of either type A or B, K;NG; # (;
also K; and K ; are comparable in size by the following lemma.

Lemma 2.2. Suppose {w;}7L, is as in Lemma 2.1, then there exist ky and ¢y > 0
such that ;' <L < ¢y for all T € A(J), J € T with |J| > ky.
rr
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Proof. The idea is in [L, Lemma 3.1}, we modify it to fit our purpose. Let k1 > kg
such that

min{|I|: I € A(J) and |J| > k1 } > k.

For any I € A(J), J € J with |J| > k;. We consider the two cases
(1) If iy # ji1, by the construction of B, we have I € Agjame,. Then

rr < diam Gy <714, < crr ey (2.10)
where 7 = min; <<, {r;}. As e <27 c;'0 < 6, it follows from (2.4) that
diam G > c;tery.
Hence
cytery < diam Gy < cprtry. (2.11)
Also by (2.9), we have
diam G; < 2c9ery + | K.
Then by (2.10) and (2.5), it follows that
rr < diam Gy < ¢3(2e + | K|)ry. (2.12)

Hence (2.11) and (2.12) imply that there exists a > 0 such that
< < (2.13)
rr
(ii) If 44 = j;, we write
J=gv g gn =g i T =g e = g ]
where i1 # 4;41. Then by the construction of A, we see inductively that I’ € A(J")
and by (2.13), a=! <7y /rp < a. This and Lemma 2.1(i) imply that
(ac?)™ < 1 < ac?.
rr

If we let ¢4 = ac?, then the lemma follows from the conclusion of the two cases. W

We remark that for fixed Jy € J, the construction of the set A implies trivially
that

AGJ) 2 {jI: T €Ay}, j=1,---,m.

The key to prove the SOSC is to find Jy such that the equality holds (Lemma 3.4).
In this case the set B is empty.



3. The proof of the main results

We need a few notations and lemmas. For any two subsets F, F in R?, we define

DE,F) = inf{lt—y|:z € E, ye F};
d(E,F) = inf{e: EC B(F,¢),FF C B(E,¢)}.

Lemma 3.1. [FL, Lemma 2.8] Let w be conformal and invertible, let D be a Borel
subset in the domain of w, and 0 < H*(D) < oo. Then we have the following

formula of change of variable,
- [ W@)rane(a).
D

Lemma 3.2. Let {w;}72, be as in Theorem 1.1. Suppose 0 < HY(K) < oo, then
H (KI N KJ) =0 for any incomparadble I,J € J.

Proof. Since T, has spectral radius 1, by [FL, Theorem 1.1], there exists 0 < h €
C(K) such that h(z) = 37", |wj(x)|*h(w;z). Then

Z / z)dH (x / L h(x)dH (z) = /K h(z)dH (x)

w “h(w;x)dH* (x x)dH*(z
/Z| o)l hluwa Z/

(The last equality is followed from Lemma 3.1.) This implies that
Ha(Ki N Kj) =0 for any i # j.
It follows immediately that

H*(K;NK,;) =0 for any incomparable [,J€J. W

Lemma 3.3. Let {w;}72, be as in Lemma 3.2. Then there exists fived 0y > 0 such
that for any L € J,
lwr(:) =

9 oy = Sore. for any 1,7 € A(L) with T # .
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Proof. Since 0 < H*(K) < oo, there exists an open set U such that K CU C X
and

0<HYU) <HYK)+1<o0.
Let ¢; and 6 be defined as in Lemma 2.1 and let 0 < n < 271¢]*, there exists an
open covering {V;}; of K such that

KQV::OVZ-QU,

=1

§ = D(K,V°) <§ (3.1)
and
0 < HYK) < |Vil* < (14 n)H(K). (3.2)

For any pair of I, J € A(L), let us assume without loss of generality that H*(K ;) >
H*(Kp). Then for any given e satisfying ¢{'n < ¢ < 1, we have

67‘[04(}(]) < HOC(KJ). (33)
We claim that d(K;, K ;) > §'r;. Otherwise if d( K, K;) < §'rr, by (3.1) and Lemma
2.1(ii), we have D(K;,w;(V®)) > &'ry, then K; C w;(V). Hence by (3.3) and
Lemma 3.2, we have

(1+ )M (K) < HO(K)) + HO(K ) = 1 (K | Ky) < 1 (wi(V)).
This together with (3.2) imply that
erfH(K) < eH*(K;) < HY(wr(V \ K)) < (c1r)*HY(V \ K) < (c1r7)*nH* (K).

(The first and third inequalities are followed from Lemma 3.1 and Lemma 2.1(i).)
Then € < c{'n, it contradicts the choice of . The claim is proved, and the lemma
follows. W

Lemma 3.4. Let {w;}7, be as in Lemma 3.2. Then vy = sup sy, #A(L) < oo.
If we let Jy € J such that |Jo| > k1 and #A(Jy) =, then

AIJ) ={IJ:J€A(J)}  foral I€J. (3.4)

Proof. Let c3, ¢4 and 9§y be constants given in Lemma 2.1, Lemma 2.2 and Lemma
3.3 respectively. Let &' = (3czcq) 'dp. We can find a finite set Z C K such that
its ¢’-neighborhood covers K. For any L € J with |L| > k; and for all different
I,J € A(L), by Lemma 3.3, there exists z € K such that |wr(z) — ws(z)| > dorp.
For the above chosen x there exists z € Z such that |z — z| < ¢’, then by (2.5) and
the choice of ky (see the proof of Lemma 2.2 ), we have

4}
\wr(z) —wr(z)] < gorL and |wy(z) —w;(2)| < 3L
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It follows that for any different I, .J € A(L), there exists some z € Z such that

do
lwy(2) —wy(2)| > 3L (3.5)

For each z € Z, set
P,(L)y={IeA(L):3Je€A(L) > (3.5) holds }.
Hence (3.5) implies that

AL) = | PAL).
z2€Z
To prove sup,z sy, $A(L) < 0o, we observe that for each z € Z, the sets
J
{B(w(2), gom) I e P(L)}

are disjoint by (3.5) and are contained in B(Gy, diam K; + %OTL> by the defini-
tion of A(L). By Lemma 2.1(iii) and Lemma 2.2, there exist ¢ > 0 (independent
of L) and z € K such that B(GL, diam K7 + %TL) - B(.T},CTL). By a simple
volume argument, we deduce that there exists an ¢ (independent of L) such that
max,ez P, (L) < ¢. Then

IA(L) < (22) maxiP.(L) < ((47).

We conclude that v = sup >, #A(L) < oo. Hence there exists Jy such that [ Jo| > k;
and A (Jy) = 7.
To prove (3.4), we have remarked after the definition of A(J) that

is trivial. On the other hand, the choice of Jy implies that g{I.J : J € A(Jy)} = 7.
Thus the maximum of v implies that §A(/.Jy) = 7 also and (3.4) follows W

Proof of Theorem 1.1.

It is obvious that (ii) implies (i). That (i) implies (iii) is in [MU] and [FL]. We are
hence required to prove (iii) implies (ii). The proof needs only small modification of
[S] and is the same as [L], we include it here for completeness. Let Jy € J be chosen
as in Lemma 3.4. For any fixed 1 <[ <m and J = ji1jo - jn € J with 71 # [, we
consider the family

K, = {KL L e AdiamGJJO with {; = l}

where [; is the first index of the multiple indices of L. Then K; is a cover of Kj.
Since 71 # Ui, (3.4) implies that L ¢ A(J.Jy). Then by the construction of B,
K; NGy, = 0. Hence by (2.9), we have D(Kp, Ky;,) > ¢ 'ery;,, which implies

D(KZ,KJJO) Z C;lngJO fOI" l 7é jl- (36)



Now we let G = wy(B(K, 27 ¢; %)) and let
U= ]G
Jeg

We claim that the U satisfies the condition of the SOSC. Indeed U is a bounded
open set, U N K # () and

w;(U) = U w;i(Gy,) = U Gl €U
Jeg Jeg
Now we prove that
w;(U) Nw;(U) =0 for i # j.
For otherwise, there are I, J such that Gj;; NG5,; # 0. We assume 775, > 757,

Let y be in the intersection, then there exist y; € K15, and yo € Kj; , such that
1

d(y,y1) < ca - 2%%5 “Tirg, < %THJO
and X
d(y,y2) < ca - 2%36 gy < CQ—;T’UJO-
Then
d(y1,y2) < ¢5 erirg,.
Hence

D(Kiry,, Kj) < ¢5'eri,
which contradicts (3.6). This completes the proof. W

Lemma 3.5. [FL, Theorem 2.9] Let {w;}7., be as in Theorem 1.1 and satisfy the
OSC. Let v ="H*| k. Then v is the invariant measure for T, i.e., Tiv = v.

Proof of Theorem 1.2.

By the assumption and Theorem 1.1, we have 0 < H*(K) < oco. We will adop-
t the proof of Theorem 1.1 and let U be the one constructed there. To prove
dimg(K\U) < a. Let p = H*(K) 'H®, then by Lemma 3.5, u is a probability
invariant measure of T, i.e.,

M:

M

(Jwj(@)|*n) o w; ™. (3.7)

j
Let k := |Jy|. Then by Lemma 2.1 and Lemma 3.1, we have

W) > o, (3.5)
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for any L € 7,

P(Krg) =H(K)™ /K |wy (wao )|, (2)|*dH (x) = rirg, > e *rGu(KL). (3.9)

For any integer n, let

U_U UGJJO

=0 | J|=k¢
Then U, C U. Let
J(n) ={(j1j2" " Jrn) : 1 < ji <m}

and

En = {L = (lllg SR lkn) € j(n) : (lkg+1lkg+2 HR lkg+k) 7é Jo V 0</i< n}
Since for any J with 0 < [J| = k¢ < kn, we deduce from K = [J;_, w;(K) that

Ky =wy(K) = U Ky (3.10)
|J'|=k(n—1)—|J|

Then

K\U C K\Un:K\nL_J1 U G*JJOQK\U U Kz,

£=0 |J|=k¢ 0=0 |J|=kt
— ﬂ N N K5urS | Ke (3.11)
=0 |J|=kt | J'|=k(n—1)—|J| LELy

We need to estimate the value of H* ( Urer, K L). For this we will prove inductively
that

Z p(Kr) < (1—c¢%rg)"  for any n. (3.12)

Lel,

Indeed by Lemma 3.2, we have
wWKiNKy;)=0 forany I,J e L, with I # J.
This together with (3.8) imply that

Z (KL UKL —1— (KJO>_1 CIQT?.

LeLy ‘LL?T;]%

Assume that

Z p(Kp) < (1 — ¢ T?O)n-

Since
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then
DoonlE) =Y > wKey) = Y K
LELn 41 LEL, |J|=k LEL,
= > ulKp) =Y p(Ky) < Y0 p(KL) = v, Y p(KL) by (3.9)
LeLl, LeL, LeLl, LeLl,
= (1 — cl’arﬁo) Z w(Kp) < (1 — cfargo) (1 — cl’o‘rf}‘o)n = (1 — cfarﬁo)nﬂ.
LeLy,

Let 0, :== max{ diam K, : L € £,} and r = minj<;j<,,{r; }. If we take

log (1 — cl_o‘r?]‘O)
klogr '

b :=a—
Then 8 < a. Denote ¢y = (c3 diam K)P. Then for large n, we have
M1 (K\U)<H; (| Ki) <) (diam K1) by (3.11)

LeLn LeLn
< Z (csr, diam K)? = ¢, Z = Z e by (2.5)
LeLn LeL, LeL,
< g (T”k(’B*O‘) Z ,U(KL)) < c4(rk(’8’a)(1 — cl’o‘r?jo))n < ¢y by (3.12)

LeLy
Since lim,, ;o 6, = 0, then H?(K\U) < ¢4 < 00, hence dimyg(K\U) < 3. R

Corollary 3.6. Let {w;}7L, be as in Theorem 1.2. Then
dimp (w;(K) Nw;(K)) < a for i j.

Proof. Let Jy and 8 be as the proof of Theorem 1.2. Using (3.12), we can show
similarly to [LX, Theorem 1.6] that dimy (w;(K) Nw;(K)) < <a. B

Theorem 3.7. Let {w;}7., be as in Theorem 1.2. If the {w;}72, has a basic open
set U such that U\ U7, w;(U) # 0, then dimp K < d.

Proof. Suppose that dimyg K = d, since {wj}g’;l satisfies the OSC, we know from
[FL, Theorem 2.7] that T has spectral radius 1, i.e., & = d. Since U\ UJj~, w;(U) is
an open subset of R?, the proof will be finished if we can show that H¢(U\ Uity w; (0))
= 0. For this, let

vV =U\ Lmj w;(0). (3.13)

We claim that
w(V)(Nws,(V)=0 V¥ ILJeJ, I+ (3.14)
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In fact for I, J comparable, namely J = I[,. Since U is a basic open set, we have
wi(U)CU  and  w(U)[w;(U) =0, Vi#j (3.15)
then wy, (V) C UL, w;(U), and then wy, (V) V = (). Hence

V) ws (V) S wr(V(\wr, (V) =0.

If 1, J are incomparable, let [ = iyiy- -4, , J = j1jo -+ jg and r = min{k : i, # ji }.
Denote Iy = iyis---i,—1. By (3.13) and (3.15), we have

V) ﬂ wJ( C wlo wl ﬂ w]'r

This completes the proof of the claim.
By (3.14) and Lemma 3.1, we have

Z/ > (@) *dH (2 Z > M1 wy (V) = 1A wi (V) < HAU) < .

|J=n n=1|J|=n JET (3.16)

| |
=

On the other hand, for any fixed yo € K and any x € X, by Lemma 2.1(i)

ey (yo) " < ()",

Y W)l < Y ()Y we X

|J|=n |J|=n
Since o = d, it follows from [FL, Theorem 1.1] that

lim Z lw;()|4 = h(-) uniformly on K
|J]|=n

Hence

where 0 < h € C(K) is the 1-eigenfunction of the Ruelle operator T;. Then

(o) HUV) = ¢ - hm/ Z [’y (yo)|*dH () < hmmf/ Z W'y ()| *dH (z).

|J]=n |J|=n

By (3.16), the right side is 0, hence

HAUV) = HY(U\ U wi(U))=0. MW

Corollary 3.8. Let {w;}7", be as in Theorem 1.1. If a = d and H*(K) > 0. Then
K° 0 and dimpdK < d.

Proof. Let U be the basic open set constructed in the proof of Theorem 1.1. By
the assumption and Theorem 3.7, we have H*(U\ Ui, w; (U)) = 0. Then

U:U%Wy
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By the uniqueness of the invariant set K, we have K = U, and then K° O U # 0.
In view of the proof of Theorem 1.2, we have

dimy0K < dimpg(K\U) < d. W
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