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Abstract

For an one-to-one self-conformal contractive system {wj}mj=1 on Rd with attractor K

and conformality dimension α, Peres et al showed that the OSC and the SOSC are

both equivalent to 0 < Hα(K) <∞. We will give a simple proof of this result as well

as some further consideration of the properties related to the separation condition.

1. Introduction

Let U0 ⊂ Rd be a bounded open set. Let wj : U0 → U0 (j = 1, 2, · · · ,m) be

contractive maps and there exists a nonempty compact subset X ⊆ U0 such that

for each 1 ≤ j ≤ m, wj(X) ⊆ X. Then there exists a compact subset K ⊆ X such

that K =
⋃m
j=1wj(K). We say that {wj}mj=1 satisfies the open set condition (OSC)

if there exists a nonempty bounded open set U ⊆ U0 such that

wj(U) ⊆ U and wi(U)
⋂

wj(U) = ∅ for i 6= j.

Such U is called a basic open set of {wj}mj=1. If the above U satisfies further U∩K 6=
∅, then {wj}mj=1 is said to satisfy the strong open set condition (SOSC). In [S], Schief

made use of an idea of Bandt [BG] and showed that for similitude, the two conditions

are equivalent, and furthermore they are equivalent to 0 < Hα(K) <∞ where α is

the similarity dimension of K.

Recently, Peres, Rams, Simon and Solomyak [P] extended Schief’s theorem to

self-conformal maps. A simple proof was also given by Lau, Rao and the author for

the equivalence of the OSC and the SOSC [L]. In a private communication, Peres

asked if the short proof can be used to prove the equivalence to 0 < Hα(K) < ∞.

In the note we answer his question positively. The main idea and some of the proofs

are already in [L] and [FL], we will modify them to fit our purpose. In [LX] Lau

and Xu considered the boundary dimension of self-similar set. Some of their results

are extended to the self-conformal maps.
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For one-to-one contractive self-conformal IFS {wj}mj=1, we define the conformality

dimension of the IFS to be the (positive) number α such that the Ruelle operator

Tα : C(K)→ C(K) defined by

Tαf(x) =
m∑
j=1

|w′j(x)|αf
(
wj(x)

)
has spectral radius 1 [FL]. We let Hα be the α-Hausdorff measure.

We prove following Theorem 1.1 by constructing a basic open set U satisfies both

of the SOSC and dimH

(
K\U

)
< α. The key of the proof is Lemma 3.4. Furthermore

we remark that in the previous consideration of the self-conformality, an additional

connectedness assumption is added to the open set U in the OSC (see e.g. [MU],

[P]), we will see that the assumption is redundant (Lemma 2.1 and the remark

there.) Our basic results are

Theorem 1.1. Let {wj}mj=1 be one-to-one self-conformal contractive IFS with {|w′j(x)|}mj=1

satisfies (2.1) and the Dini condition. Then the followings are equivalent:

(i) {wj}mj=1 satisfies the OSC.

(ii) {wj}mj=1 satisfies the SOSC.

(iii) 0 < Hα(K) <∞.

Theorem 1.2. Let {wj}mj=1 be as in Theorem 1.1 and satisfy the OSC. Then there

exists a basic open set U such that

dim H(K \ U) < α.

2. Preliminaries

Let {wj}mj=1 be self-conformal on U0 (i.e. for each j and each x ∈ U0, w
′
j(x)

is a self-similar matrix and w′j(·) is continuous). We assume that there exists a

nonempty compact set X such that X ⊆ U0, and for each 1 ≤ j ≤ m, wj(X) ⊆ X,

wj is one-to-one on U0 and w′(·) is Dini continuous on U0 with

0 < inf
x∈U0

|w′j(x)| ≤ sup
x∈U0

|w′j(x)| < 1 for each 1 ≤ j ≤ m (2.1)

By enlarging X to X0 ⊆ U0 by a δ-neighborhood, we can show easily from the

contractiveness of wj’s that there exists k′ such that⋃
|J |=k

wJ(X0) ⊆ X0 for any k ≥ k′
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where J = j1j2 · · · jk, 1 ≤ ji ≤ m, wJ = wj1 ◦ wj2 ◦ · · · ◦ wjk . Hence we may assume

without loss of generality that X◦ = X and B(K, δ) ⊆ X◦ for some δ > 0 (B(K, δ)

denotes the open δ-neighborhood of K).

We will use the notation J = {J = j1j2 · · · jn : 1 ≤ ji ≤ m,n ∈ N}, and for any

J ∈ J define

KJ = wJ(K), rJ = inf
x∈X
|w′J(x)|, RJ = sup

x∈X
|w′J(x)|.

Lemma 2.1. Suppose X and {wj}mj=1 are defined as above. Then

(i) there exists a c1 > 1 such that

RJ ≤ c1rJ for any J ∈ J (2.2)

and

c−11 rIrJ ≤ rIJ ≤ c1rIrJ for any I, J ∈ J ; (2.3)

(ii) there exist c2 ≥ c1 and δ > 0 such that for x, y, z ∈ X, |x− y| ≤ δ,

c−12 |w′J(z)| ≤ |wJ(x)− wJ(y)|
|x− y|

≤ c2|w′J(z)| for any J ∈ J ; (2.4)

(iii) there exist c3 ≥ c2 and k0 such that for any x, y ∈ X

|wJ(x)− wJ(y)| ≤ c3rJ |x− y| for any J ∈ J with |J | > k0. (2.5)

Proof. The proof of (i) and (ii) is in [FL, Lemma 2.3]. We will include the proof of

(ii) here for completeness. For any x ∈ X, there exists δx > 0 such that the δx-open

ball B(x, δx) ⊆ U0. Since X is compact, there exists δ > 0 (the Lebesgue number)

such that for any x, y ∈ X, if |x − y| ≤ δ, then x, y ∈ B(x′, δx′) for some x′ ∈ X.

Then we can apply the mean value theorem to show that for |x− y| ≤ δ∣∣wJ(x)− wJ(y)
∣∣ =

∣∣w′J(ξ)(x− y)
∣∣,

where ξ is in the line segment joining x and y. The self-similar property of wJ(·)
yields ∣∣wJ(x)− wJ(y)

∣∣ =
∣∣w′J(ξ)

∣∣|(x− y)|. (2.6)

This together with (2.2) implies (ii).

(iii) follows directly from the choice of the above δ, (2.6) and (ii). �

To make use of the local connectedness of X, we take 0 < ε < 2−1c−13 δ, then

2c3ε ≤ δ, and hence by the assumption on X, we have

B(K, c3ε) ⊆ X. (2.7)

For J ∈ J , let

GJ = wJ(B(K, ε)).



4

Consequently by (2.7) and (2.4), we have for any x ∈ K,

B(wJ(x), c−12 εrJ) ⊆ wJ
(
B(x, ε)

)
⊆ B(wJ(x), c2εrJ). (2.8)

It follows that

B(KJ , c
−1
2 εrJ) =

⋃
x∈K

B(wJ(x), c−12 εrJ) ⊆ GJ =
⋃
x∈K

wJ
(
B(x, ε)

)
⊆

⋃
x∈K

B(wJ(x), c2εrJ) = B(KJ , c2εrJ). (2.9)

We remark that in [MU] and [P] the connectedness of X was used to apply the

mean value theorem so as to deduce (2.8) and (2.9); The above argument says that

the local connectedness of X is enough to deduce them. Hence we can study its

separation properties in the absence of the connectedness assumption on U0 so long

as we regard the concerned sets to be union of subsets whose diameter are less than

δ.

For 0 < b < 1, we let

Λb = {J = j1 · · · jn : rj1···jn < b ≤ rj1···jn−1}.

As in [L], our most crucial difference from [S] and [P] is the following inductive way

to define the index set Λ(J), J ∈ J : Let k0 be defined as in Lemma 2.1(iii), for J

with |J | = k0, we define

Λ(J) = {I ∈ ΛdimGJ
: KI ∩GJ 6= ∅}.

Suppose Λ(J) is defined, for any 1 ≤ j ≤ m, we define

Λ(jJ) = A ∪ B

where

A = {jI : I ∈ Λ(J)}

and

B = {I ∈ ΛdiamGjJ
: i1 6= j and KI ∩GjJ 6= ∅}.

(Note that in [S], the Λ(J) is defined as {I ∈ ΛdimGJ
: KI ∩GJ 6= ∅}.) It is easy to

see from the construction that each I ∈ Λ(J) is of either type A or B, KI ∩GJ 6= ∅;
also KI and KJ are comparable in size by the following lemma.

Lemma 2.2. Suppose {wj}mj=1 is as in Lemma 2.1, then there exist k1 and c4 > 0

such that c−14 ≤
rJ
rI
≤ c4 for all I ∈ Λ(J), J ∈ J with |J | ≥ k1.



5

Proof. The idea is in [L, Lemma 3.1], we modify it to fit our purpose. Let k1 ≥ k0
such that

min{|I| : I ∈ Λ(J) and |J | ≥ k1} > k0.

For any I ∈ Λ(J), J ∈ J with |J | ≥ k1. We consider the two cases

(i) If i1 6= j1, by the construction of B, we have I ∈ ΛdiamGJ
. Then

rI ≤ diam GJ ≤ ri1···in−1 ≤ c1r
−1rI (2.10)

where r = min1≤j≤m{rj}. As ε < 2−1c−13 δ < δ, it follows from (2.4) that

diam GJ ≥ c−12 εrJ .

Hence

c−12 εrJ ≤ diam GJ ≤ c1r
−1rI . (2.11)

Also by (2.9), we have

diam GJ ≤ 2c2εrJ + |KJ |.

Then by (2.10) and (2.5), it follows that

rI ≤ diam GJ ≤ c3(2ε+ |K|)rJ . (2.12)

Hence (2.11) and (2.12) imply that there exists a > 0 such that

a−1 ≤ rJ
rI
≤ a. (2.13)

(ii) If i1 = j1, we write

J = j1 · · · jl jl+1 · · · jn := j1 · · · jlJ ′, I = j1 · · · jl il+1 · · · im := j1 · · · jlI ′

where jl+1 6= il+1. Then by the construction of A, we see inductively that I ′ ∈ Λ(J ′)

and by (2.13), a−1 ≤ rJ ′/rI′ ≤ a. This and Lemma 2.1(i) imply that

(ac21)
−1 ≤ rJ

rI
≤ ac21.

If we let c4 = ac21, then the lemma follows from the conclusion of the two cases. �

We remark that for fixed J0 ∈ J , the construction of the set A implies trivially

that

Λ(jJ0) ⊇ {jI : I ∈ Λ(J0)}, j = 1, · · · ,m.

The key to prove the SOSC is to find J0 such that the equality holds (Lemma 3.4).

In this case the set B is empty.
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3. The proof of the main results

We need a few notations and lemmas. For any two subsets E,F in Rd, we define

D(E,F ) = inf{|x− y| : x ∈ E, y ∈ F};
d(E,F ) = inf{ε : E ⊆ B(F, ε), F ⊆ B(E, ε)}.

Lemma 3.1. [FL, Lemma 2.8] Let w be conformal and invertible, let D be a Borel

subset in the domain of w, and 0 < Hα(D) < ∞. Then we have the following

formula of change of variable,

Hα
(
w(D)

)
=

∫
D

|w′(x)|αdHα(x).

Lemma 3.2. Let {wj}mj=1 be as in Theorem 1.1. Suppose 0 < Hα(K) <∞, then

Hα
(
KI ∩KJ

)
= 0 for any incomparable I, J ∈ J .

Proof. Since Tα has spectral radius 1, by [FL, Theorem 1.1], there exists 0 < h ∈
C(K) such that h(x) =

∑m
j=1 |w′j(x)|αh(wjx). Then

m∑
j=1

∫
Kj

h(x)dHα(x) ≥
∫
⋃m

j=1Kj

h(x)dHα(x) =

∫
K

h(x)dHα(x)

=

∫
K

m∑
j=1

|w′j(x)|αh(wjx)dHα(x) =
m∑
j=1

∫
Kj

h(x)dHα(x).

(The last equality is followed from Lemma 3.1.) This implies that

Hα
(
Ki ∩Kj

)
= 0 for any i 6= j.

It follows immediately that

Hα
(
KI ∩KJ

)
= 0 for any incomparable I, J ∈ J . �

Lemma 3.3. Let {wj}mj=1 be as in Lemma 3.2. Then there exists fixed δ0 > 0 such

that for any L ∈ J ,∥∥wI(·)− wJ(·)
∥∥
C(K)

≥ δ0rL for any I, J ∈ Λ(L) with I 6= J.
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Proof. Since 0 < Hα(K) < ∞, there exists an open set U such that K ⊆ U ⊂ X

and

0 < Hα(U) ≤ Hα(K) + 1 <∞.
Let c1 and δ be defined as in Lemma 2.1 and let 0 < η < 2−1c−α1 , there exists an

open covering {Vi}ni=1 of K such that

K ⊆ V :=
n⋃
i=1

Vi ⊆ U,

δ′ := D(K,V c) < δ (3.1)

and

0 < Hα(K) ≤
n∑
i=1

|Vi|α < (1 + η)Hα(K). (3.2)

For any pair of I, J ∈ Λ(L), let us assume without loss of generality that Hα(KJ) ≥
Hα(KI). Then for any given ε satisfying cα1η < ε < 1, we have

εHα(KI) < Hα(KJ). (3.3)

We claim that d(KI , KJ) ≥ δ′rI . Otherwise if d(KI , KJ) < δ′rI , by (3.1) and Lemma

2.1(ii), we have D
(
KI , wI(V

c)
)
≥ δ′rI , then KJ ⊆ wI(V ). Hence by (3.3) and

Lemma 3.2, we have

(1 + ε)Hα(KI) < Hα(KI) +Hα(KJ) = Hα(KI

⋃
KJ) ≤ Hα(wI(V )).

This together with (3.2) imply that

εrαIHα(K) ≤ εHα(KI) < Hα(wI(V \K)) ≤ (c1rI)
αHα(V \K) < (c1rI)

αηHα(K).

(The first and third inequalities are followed from Lemma 3.1 and Lemma 2.1(i).)

Then ε < cα1η, it contradicts the choice of ε. The claim is proved, and the lemma

follows. �

Lemma 3.4. Let {wj}mj=1 be as in Lemma 3.2. Then γ := sup|L|≥k1 #Λ(L) < ∞.

If we let J0 ∈ J such that |J0| ≥ k1 and #Λ(J0) = γ, then

Λ(IJ0) = {IJ : J ∈ Λ(J0)} for all I ∈ J . (3.4)

Proof. Let c3, c4 and δ0 be constants given in Lemma 2.1, Lemma 2.2 and Lemma

3.3 respectively. Let δ′ = (3c3c4)
−1δ0. We can find a finite set Z ⊂ K such that

its δ′-neighborhood covers K. For any L ∈ J with |L| ≥ k1 and for all different

I, J ∈ Λ(L), by Lemma 3.3, there exists x ∈ K such that |wI(x) − wJ(x)| ≥ δ0rL.

For the above chosen x there exists z ∈ Z such that |x− z| < δ′, then by (2.5) and

the choice of k1 (see the proof of Lemma 2.2 ), we have

|wI(x)− wI(z)| ≤ δ0
3
rL and |wJ(x)− wJ(z)| ≤ δ0

3
rL.
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It follows that for any different I, J ∈ Λ(L), there exists some z ∈ Z such that

|wI(z)− wJ(z)| ≥ δ0
3
rL. (3.5)

For each z ∈ Z, set

Pz(L) = {I ∈ Λ(L) : ∃ J ∈ Λ(L) 3 (3.5) holds }.

Hence (3.5) implies that

Λ(L) =
⋃
z∈Z

Pz(L).

To prove sup|L|≥k1 ]Λ(L) <∞, we observe that for each z ∈ Z, the sets

{B
(
wI(z),

δ0
6
rL
)

: I ∈ Pz(L)}

are disjoint by (3.5) and are contained in B
(
GL, diam KI + δ0

6
rL
)

by the defini-

tion of Λ(L). By Lemma 2.1(iii) and Lemma 2.2, there exist c > 0 (independent

of L) and x ∈ K such that B
(
GL, diam KI + δ0

6
rL
)
⊆ B

(
x, crL

)
. By a simple

volume argument, we deduce that there exists an ` (independent of L) such that

maxz∈Z ]Pz(L) ≤ `. Then

]Λ(L) ≤ (]Z) max
z∈Z

]Pz(L) ≤ `(]Z).

We conclude that γ = sup|L|≥k1 ]Λ(L) <∞. Hence there exists J0 such that |J0| ≥ k1
and ]Λ(J0) = γ.

To prove (3.4), we have remarked after the definition of Λ(J) that

Λ(jJ0) ⊇ {jI : I ∈ Λ(J0)}, j = 1, · · · ,m

is trivial. On the other hand, the choice of J0 implies that ]{IJ : J ∈ Λ(J0)} = γ.

Thus the maximum of γ implies that ]Λ(IJ0) = γ also and (3.4) follows �

Proof of Theorem 1.1.

It is obvious that (ii) implies (i). That (i) implies (iii) is in [MU] and [FL]. We are

hence required to prove (iii) implies (ii). The proof needs only small modification of

[S] and is the same as [L], we include it here for completeness. Let J0 ∈ J be chosen

as in Lemma 3.4. For any fixed 1 ≤ l ≤ m and J = j1j2 · · · jn ∈ J with j1 6= l, we

consider the family

Kl = {KL : L ∈ ΛdiamGJJ0
with l1 = l}

where l1 is the first index of the multiple indices of L. Then Kl is a cover of Kl.

Since j1 6= l1, (3.4) implies that L 6∈ Λ(JJ0). Then by the construction of B,

KL ∩GJJ0 = ∅. Hence by (2.9), we have D(KL, KJJ0) ≥ c−12 εrJJ0 , which implies

D(Kl, KJJ0) ≥ c−12 εrJJ0 for l 6= j1. (3.6)
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Now we let G∗J = wJ
(
B(K, 2−1c−22 ε)

)
and let

U =
⋃
J∈J

G∗JJ0 .

We claim that the U satisfies the condition of the SOSC. Indeed U is a bounded

open set, U ∩K 6= ∅ and

wj(U) =
⋃
J∈J

wj(G
∗
JJ0

) =
⋃
J∈J

G∗jJJ0 ⊆ U.

Now we prove that

wi(U) ∩ wj(U) = ∅ for i 6= j.

For otherwise, there are I, J such that G∗iIJ0 ∩G
∗
jJJ0
6= ∅. We assume riIJ0 ≥ rjJJ0 .

Let y be in the intersection, then there exist y1 ∈ KiIJ0 and y2 ∈ KjJJ0 such that

d(y, y1) < c2 ·
1

2c22
ε · riIJ0 ≤

c−12 ε

2
riIJ0

and

d(y, y2) < c2 ·
1

2c22
ε · rjJJ0 ≤

c−12 ε

2
riIJ0 .

Then

d(y1, y2) < c−12 εriIJ0 .

Hence

D(KiIJ0 , Kj) < c−12 εriIJ0

which contradicts (3.6). This completes the proof. �

Lemma 3.5. [FL, Theorem 2.9] Let {wj}mj=1 be as in Theorem 1.1 and satisfy the

OSC. Let ν = Hα|K. Then ν is the invariant measure for Tα, i.e., T ∗αν = ν.

Proof of Theorem 1.2.

By the assumption and Theorem 1.1, we have 0 < Hα(K) < ∞. We will adop-

t the proof of Theorem 1.1 and let U be the one constructed there. To prove

dimH(K\U) < α. Let µ = Hα(K)−1Hα, then by Lemma 3.5, µ is a probability

invariant measure of Tα, i.e.,

µ =
m∑
j=1

(|w′j(x)|αµ) ◦ w−1j . (3.7)

Let k := |J0|. Then by Lemma 2.1 and Lemma 3.1, we have

µ(KJ0) ≥ c−α1 rαJ0 ; (3.8)
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for any L ∈ J ,

µ(KLJ0) = Hα(K)−1
∫
K

|w′L(wJ0x)|α|w′J0(x)|αdHα(x) ≥ rαLr
α
J0
≥ c−α1 rαJ0µ(KL). (3.9)

For any integer n, let

Un =
n−1⋃
`=0

⋃
|J |=k`

G∗JJ0 .

Then Un ⊆ U . Let

J (n) = {(j1j2 · · · jkn) : 1 ≤ ji ≤ m}
and

Ln = {L = (l1l2 · · · lkn) ∈ J (n) : (lk`+1lk`+2 · · · lk`+k) 6= J0 ∀ 0 ≤ ` < n}.

Since for any J with 0 ≤ |J | = k` < kn, we deduce from K =
⋃m
j=1wj(K) that

KJJ0 = wJJ0(K) =
⋃

|J ′|=k(n−1)−|J |

KJJ0J ′ . (3.10)

Then

K\U ⊆ K\Un = K\
n−1⋃
`=0

⋃
|J |=k`

G∗JJ0 ⊆ K\
n−1⋃
`=0

⋃
|J |=k`

KJJ0

=
n−1⋂
`=0

⋂
|J |=k`

⋂
|J ′|=k(n−1)−|J |

Kc
JJ0J ′ ⊆

⋃
L∈Ln

KL. (3.11)

We need to estimate the value of Hα
(⋃

L∈Ln KL

)
. For this we will prove inductively

that ∑
L∈Ln

µ(KL) ≤
(
1− c−α1 rαJ0

)n
for any n. (3.12)

Indeed by Lemma 3.2, we have

µ(KI ∩KJ) = 0 for any I, J ∈ Ln with I 6= J.

This together with (3.8) imply that∑
L∈L1

µ(KL) = µ
( ⋃

L 6=J0
|L|=k

KL

)
= 1− µ(KJ0) ≤ 1− c−α1 rαJ0 .

Assume that ∑
L∈Ln

µ(KL) ≤
(
1− c−α1 rαJ0

)n
.

Since ∑
|J |=k

µ(KLJ) = µ(KL),
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then ∑
L∈Ln+1

µ(KL) =
∑
L∈Ln

∑
|J |=k

µ(KLJ)−
∑
L∈Ln

µ(KLJ0)

=
∑
L∈Ln

µ(KL)−
∑
L∈Ln

µ(KLJ0) ≤
∑
L∈Ln

µ(KL)− c−α1 rαJ0

∑
L∈Ln

µ(KL) by (3.9)

=
(
1− c−α1 rαJ0

) ∑
L∈Ln

µ(KL) ≤
(
1− c−α1 rαJ0

)(
1− c−α1 rαJ0

)n
=
(
1− c−α1 rαJ0

)n+1
.

Let δn := max{ diam KL : L ∈ Ln} and r = min1≤j≤m{rj}. If we take

β := α−
log
(
1− c−α1 rαJ0

)
k log r

.

Then β < α. Denote c4 = (c3 diam K)β. Then for large n, we have

Hβ
δn

(K\U) ≤ Hβ
δn

( ⋃
L∈Ln

KL

)
≤
∑
L∈Ln

( diam KL)β by (3.11)

≤
∑
L∈Ln

(c3rL diam K)β = c4
∑
L∈Ln

rβL = c4
∑
L∈Ln

rβ−αL rαL by (2.5)

≤ c4

(
rnk(β−α)

∑
L∈Ln

µ(KL)
)
≤ c4

(
rk(β−α)(1− c−α1 rαJ0)

)n ≤ c4. by (3.12)

Since limn→∞ δn = 0, then Hβ(K\U) ≤ c4 <∞, hence dimH(K\U) ≤ β. �

Corollary 3.6. Let {wj}mj=1 be as in Theorem 1.2. Then

dimH

(
wi(K) ∩ wj(K)

)
< α for i 6= j.

Proof. Let J0 and β be as the proof of Theorem 1.2. Using (3.12), we can show

similarly to [LX, Theorem 1.6] that dimH

(
wi(K) ∩ wj(K)

)
≤ β < α. �

Theorem 3.7. Let {wj}mj=1 be as in Theorem 1.2. If the {wj}mj=1 has a basic open

set U such that U\
⋃m
j=1wj(U) 6= ∅, then dimHK < d.

Proof. Suppose that dimHK = d, since {wj}mj=1 satisfies the OSC, we know from

[FL, Theorem 2.7] that Td has spectral radius 1, i.e., α = d. Since U\
⋃m
j=1wj(U) is

an open subset of Rd, the proof will be finished if we can show thatHd(U\
⋃m
j=1wj(U))

= 0. For this, let

V = U\
m⋃
j=1

wj(U). (3.13)

We claim that

wI(V )
⋂

wJ(V ) = ∅ ∀ I, J ∈ J , I 6= J. (3.14)
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In fact for I, J comparable, namely J = II0. Since U is a basic open set, we have

wi(U) ⊂ U and wi(U)
⋂

wj(U) = ∅, ∀ i 6= j, (3.15)

then wI0(V ) ⊂
⋃m
j=1wj(U), and then wI0(V )

⋂
V = ∅. Hence

wI(V )
⋂

wJ(V ) ⊆ wI
(
V
⋂

wI0(V )
)

= ∅.

If I, J are incomparable, let I = i1i2 · · · ip , J = j1j2 · · · jq and r = min{k : ik 6= jk}.
Denote I0 = i1i2 · · · ir−1. By (3.13) and (3.15), we have

wI(V )
⋂

wJ(V ) ⊆ wI0
(
wir(U)

⋂
wjr(U)

)
= ∅.

This completes the proof of the claim.

By (3.14) and Lemma 3.1, we have
∞∑
n=1

∫
V

∑
|J |=n

|w′J(x)|ddHd(x) =
∞∑
n=1

∑
|J |=n

Hd(wJ(V )) = Hd(
⋃
J∈J

wJ(V )) ≤ Hd(U) <∞.
(3.16)

On the other hand, for any fixed y0 ∈ K and any x ∈ X, by Lemma 2.1(i)

c−d1 |w′J(y0)|d ≤ |w′J(x)|d.

Hence

c−d1

∑
|J |=n

|w′J(y0)|d ≤
∑
|J |=n

|w′J(x)|d, x ∈ X.

Since α = d, it follows from [FL, Theorem 1.1] that

lim
n

∑
|J |=n

|w′J(·)|d = h(·) uniformly on K

where 0 < h ∈ C(K) is the 1-eigenfunction of the Ruelle operator Td. Then

c−d1 h(y0)Hd(V ) = c−d1 · lim
n

∫
V

∑
|J |=n

|w′J(y0)|ddHd(x) ≤ lim inf
n

∫
V

∑
|J |=n

|w′J(x)|ddHd(x).

By (3.16), the right side is 0, hence

Hd(V ) = Hd
(
U\

m⋃
j=1

wj(U)
)

= 0. �

Corollary 3.8. Let {wj}mj=1 be as in Theorem 1.1. If α = d and Hd(K) > 0. Then

K◦ 6= ∅ and dimH∂K < d.

Proof. Let U be the basic open set constructed in the proof of Theorem 1.1. By

the assumption and Theorem 3.7, we have Hd
(
U\
⋃m
j=1wj(U)

)
= 0. Then

U =
m⋃
j=1

wj(U).
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By the uniqueness of the invariant set K, we have K = U , and then K◦ ⊇ U 6= ∅.
In view of the proof of Theorem 1.2, we have

dimH∂K ≤ dimH(K\U) < d. �
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