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An eigenvalue λ of a graph G of order n is a main eigenvalue if its eigenspace is not 
orthogonal to the all-ones vector jn . In 1978, Cvetković proved that G has exactly one 
main eigenvalue if and only if G is regular, and posed the following long-standing problem: 
characterize the graphs with exactly k (2 ≤ k ≤ n) main eigenvalues. Graphs of order n with 
n, n −1 main eigenvalues are called controllable, almost controllable, respectively. Cographs, 
threshold graphs are frequently studied in structural graph theory and computer science. 
In this paper, all almost controllable cographs, all almost controllable threshold graphs and 
all almost controllable graphs with second largest eigenvalue less than or equal to 

√
5−1
2

are characterized. Furthermore, we give some results about cographs with exactly n − 2
main eigenvalues, and propose some additional problems for further study.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, G is a simple graph with vertex set V (G) = {v1, · · · , vn} and edge set E(G), where |V (G)| = n
is the order of G and |E(G)| is the number of edges in G . If the vertices vi and v j are adjacent, we write vi ∼ v j , then 
e = vi v j is an edge that belongs to E(G) and we say vi (v j) is incident to e. Let NG(u) be the neighbourhood set of u in 
G and dG (u) = |NG(u)| be the degree of the vertex u in G . Two vertices u, v of G are called duplicate vertices if u � v and 
NG(u) = NG(v), co-duplicate vertices if u ∼ v and NG(u)\{v} = NG(v)\{u}. The complement of a graph G is denoted by G . 
Let Kn, Ka,b, Pn be the complete graph, complete bipartite graph, path of order n where a + b = n, respectively. The union
of two disjoint graphs G and H is denoted by G ∪ H . The join G�H of two disjoint graphs G and H is the graph obtained 
from G ∪ H by joining each vertex of G to each vertex of H . Suppose V ′ ⊆ V (G), the induced subgraph of G with respect to 
V ′ is a graph with vertex set V ′ and edge set E ′ , where vi v j ∈ E ′ if vi v j ∈ E(G) for any vi, v j ∈ V ′ , G − V ′ is the graph 
obtained from G after deleting each vertex v ∈ V ′ and all edges that are incident to v . An elementary graph is a graph in 
which each component is K2 or a cycle.

Let A(G) = [aij] be the n ×n adjacency matrix of G for which aij = 1 if vi ∼ v j and aij = 0 if vi � v j . The eigenvalues of G
are the eigenvalues of its adjacency matrix A(G). The spectrum of G is the multiset of all eigenvalues of G , and we denote 
it by Spec(G). An eigenvalue λ of G is said to be a main eigenvalue if its eigenspace is not orthogonal to the all-ones vector 
jn = [1, 1, . . . , 1]T . By [6], all main eigenvalues of G are distinct. Let MainSpec(G) denote the set of all main eigenvalues 
of G .

Let λ1, λ2, . . . , λm (1 ≤ m ≤ n) be the distinct eigenvalues of G , and λ1, λ2, ..., λk (1 ≤ k ≤ m) be the main eigenvalues 
of G . Then 1 ≤ k ≤ n. Let G be a connected graph. Then A(G) is an irreducible matrix with non-negative entries, and thus 
the largest eigenvalue of G is always main by the famous Perron-Frobenius Theorem. In 1978, Cvetković proved that G has 
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Fig. 1. The graphs Gi for i ∈ {2,3,4,5,6,7}.

exactly one main eigenvalue if and only if G is regular. Besides, he posed the following long-standing problem: characterize 
the graphs with exactly k (2 ≤ k ≤ n) main eigenvalues [6].

There are a series of papers characterizing the graphs with exactly 2, n − 1, n main eigenvalues. All trees, unicyclic, 
bicyclic and tricyclic graphs with exactly 2 main eigenvalues are characterized in [21–23]. For the other relevant results, one 
can refer to Feng et al. [15], Hagos [19], Hayat et al. [20], Lepović [26], etc. For graphs with all eigenvalues main, Cvetković 
et al. defined them as controllable graphs through their correlation with control theory [10], and for the relevant results, we 
refer the readers to Cvetković et al. [10,11], Farrugia [14] and Stanić [31]. For graphs of order n with n − 1 main eigenvalues, 
Wang et al. defined them as almost controllable graphs [32], and for the recent research on almost controllable graphs, one 
can refer to [12,27,28,32].

A graph G is called reconstructible if it can be determined from the knowledge only of all one-vertex-deleted subgraphs. 
In [17], the authors proved that a graph G of order n is reconstructible if all but at most one of the eigenvalues of A(G) are 
simple, with the corresponding eigenvectors not being orthogonal to jn . Thus characterizing the graphs with exactly k main 
eigenvalues (especially k = n − 1, n) is of great importance as such graphs are reconstructible.

In this paper, we focus on almost controllable graphs and the paper is organized as follows. In Section 2, all almost 
controllable cographs and threshold graphs are characterized. In Section 3, almost controllable graphs with the second 
largest eigenvalue less than or equal to 

√
5−1
2 are determined. In Section 4, we present some results about cographs with 

exactly n − 2 main eigenvalues. Furthermore, some problems are proposed for further research.

2. Almost controllable cographs and threshold graphs

In this section, almost controllable cographs and threshold graphs are characterized.
First we define a graph Gn of order n (n ≥ 1) recursively: (1) G1 ∼= K1 where V (G1) = {v1}; (2) G2 ∼= P2 where V (G2) =

{v1, v2}; (3) For n ≥ 3, Gn is obtained from Gn−1 by adding a new vertex vn adjacent to each vertex v ∈ NGn−1 (vn−1), and 
vn ∼ vn−1 if vn−1 � vn−2, vn � vn−1 if vn−1 ∼ vn−2, where V (Gn−1) = {v1, v2, · · · , vn−1}. It is not hard to find that vn, vn−1
is a pair of duplicate vertices in Gn for odd n (≥ 3), and a pair of co-duplicate vertices in Gn for even n (≥ 2). The graphs 
Gi are shown in Fig. 1 for i ∈ {2, 3, 4, 5, 6, 7}.

By the symmetry of vn−2, vn−1 in Gn−1 and the definition of Gn (n ≥ 3), we can conclude the following proposition.

Proposition 2.1. The graph Gn (n ≥ 2) is unique up to isomorphism.

In [12], the authors raised the following problem.

Problem 2.2. ([12]) Given any integer t , how can one construct graphs (of order n) with t as the unique non-main eigenvalue 
for sufficiently large n?

Next we give an example for the cases t = 0, −1 of Problem 2.2, and we will give some lemmas first.

Lemma 2.3. Let n ≥ 1. Then Gn+1 ∼= Gn ∪ K1 .

Proof. By the definition of Gn , it is not hard to find that G1 ∼= K1, G2 ∼= 2K1, and for n ≥ 3, Gn can be obtained from Gn−1
after adding a new vertex vn adjacent to each vertex v ∈ NGn−1

(vn−1), and vn ∼ vn−1 if vn−1 � vn−2 in Gn−1, vn � vn−1 if 
vn−1 ∼ vn−2 in Gn−1. Hence {Gn}n≥3 has the same recurrence relation as {Gn}n≥3 but the initial conditions are different.

It is easy to check that dG3 (v1) = 2, dG4 (v1) = 3, · · · , dGn+1 (v1) = n by the definition of Gn+1, then dGn+1
(v1) = 0 for 

n ≥ 2. Hence {Gn+1 − v1}n≥3 and {Gn}n≥3 have the same recurrence relation by dGn+1
(v1) = 0.

We note that G2 − v1 ∼= G1, G3 − v1 ∼= G2, therefore Gn+1 − v1 ∼= Gn for n ≥ 1 since {Gn+1 − v1}n≥3 and {Gn}n≥3 have 
the same recurrence relation, and this implies Gn+1 ∼= Gn ∪ K1 by dGn+1

(v1) = 0. �
Lemma 2.4. ([29]) A graph G and its complement G have the same number of main eigenvalues.

Lemma 2.5. Let G be a graph of order n with main eigenvalues λ1, · · · , λk (k ≤ n) where λi �= 0 for 1 ≤ i ≤ k. Then MainSpec(G ∪
K1) = {λ1, · · · , λk, 0}.
2
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Proof. Let A(G)xi = λi xi for i ∈ {1, 2, · · · , n}. Then jT
n xi �= 0 for i ∈ {1, 2, · · · , k} and jT

n xi = 0 for i ∈ {k + 1, k + 2, · · · , n}.

Let yi = (xT
i , 0)T for i ∈ {1, 2, · · · , n} and yn+1 = (0, · · · , 0, 1)T . It is easy to check that A(G ∪ K1) =

[
A(G) 0
0T 0

]
, A(G ∪

K1)yi = λi yi for i ∈ {1, 2, · · · , n}, and A(G ∪ K1)yn+1 = 0 · yn+1. Clearly, jT
n+1 yi �= 0 for i ∈ {1, · · · , k, n + 1} and jT

n+1 yi = 0
for i ∈ {k + 1, · · · , n}, then we complete the proof. �

By direct calculation, we have the following results.

Proposition 2.6. Let G be a graph of order n. If G has a pair of duplicate (or co-duplicate) vertices vi, v j , then 0 (or −1) is a non-
main eigenvalue of G with the corresponding eigenvector (0, · · · , 0, 1, 0, · · · , 0, −1, 0, · · · , 0)T , where 1, −1 is the i-th, j-th entry, 
respectively.

By Proposition 2.6 and the definition of Gn (n ≥ 2), it is easy to find that −1 is a non-main eigenvalue of Gn if n is even, 
and 0 is a non-main eigenvalue of Gn if n is odd. Next we show that −1 (or 0) is the unique non-main eigenvalue of Gn .

Lemma 2.7 (Sachs’ Coefficient Theorem [9]). Let G be a graph on n vertices with characteristic polynomial P G(x) = xn + c1xn−1 +
· · · + cn−1x + cn, Hi be the set of all elementary subgraphs of G with i vertices for 1 ≤ i ≤ n. For each H in Hi , let p(H) denote the 
number of components of H and c(H) denote the number of cycles in H. Then

ci =
∑

H∈Hi

(−1)p(H)2c(H), for all i = 1, . . . ,n.

Lemma 2.8 (Interlacing Theorem [9]). Let G be a graph with n vertices and eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, H be an induced subgraph 
of G with m vertices and eigenvalues μ1 ≥ μ2 ≥ · · · ≥ μm. Then λi ≥ μi ≥ λn−m+i for i ∈ {1, 2, . . . , m}.

Lemma 2.9. Let n ≥ 2. Then 0 /∈ Spec(Gn) for n is even, and 0 is a simple non-main eigenvalue of Gn for n is odd.

Proof. We prove this by the following two cases.
Case 1. n is even.
We will prove 0 /∈ Spec(Gn) by showing that the constant cn of P Gn (x) is non-zero. By the definition of Gn , it is not 

hard to find that dGn (v1) = n − 1, dGn (v2) = 1, dGn (v3) = n − 2, dGn (v4) = 2, dGn (v5) = n − 3, dGn (v6) = 3, · · · . In general, 
NGn (vi) = {v1, v3, v5, · · · , vi−1} if i (2 ≤ i ≤ n) is even, then dGn (vn−3) = n

2 +1, dGn (vn−2) = n
2 −1, dGn (vn−1) = n

2 , dGn (vn) =
n
2 .

Let Hn be the set of all elementary subgraphs of Gn with n vertices. Now we consider the possible elementary subgraph 
H ∈ Hn which contributes to cn by Lemma 2.7. It is not hard to find that there is only one H belongs to Hn where 
E(H) = {v1 v2, v3 v4, · · · , vn−1 vn} since NGn (vi) = {v1, v3, v5, · · · , vi−1} if i (2 ≤ i ≤ n) is even. Therefore, H can only be 
isomorphic to n

2 K2 which implies cn = (−1)
n
2 20 �= 0. Thus 0 /∈ Spec(Gn) if n is even.

Case 2. n is odd.
Since Gn has a pair of duplicate vertices, 0 is a non-main eigenvalue of Gn by Proposition 2.6.
If 0 is an eigenvalue of Gn with multiplicity at least 2, then there exists some i (1 ≤ i ≤ n − 1) such that λi = 0 ≥ μi ≥

λi+1 = 0 by Lemma 2.8 and Gn−1 is an induced subgraph of Gn , where λi, λi+1 ∈ Spec(Gn) and μi ∈ Spec(Gn−1). That is to 
say 0 ∈ Spec(Gn−1), and it is impossible since n − 1 is even and 0 /∈ Spec(Gn−1) by Case 1. Thus 0 is a simple non-main 
eigenvalue of Gn for n is odd. �

Now we prove that the graph Gn (n ≥ 2) has 0 or −1 as its unique non-main eigenvalue.

Theorem 2.10. Let n ≥ 2. Then the graph Gn is almost controllable. In fact, −1 is the unique non-main eigenvalue of Gn if n is even, 
and 0 is the unique non-main eigenvalue of Gn if n is odd.

Proof. Firstly, we show |MainSpec(Gn)| = n − 1 by induction on n.
It is easy to check that Spec(G2) = {1, −1} where −1 is the unique non-main eigenvalue, and Spec(G3) = {√2, 0, −√

2}
where 0 is the unique non-main eigenvalue. Therefore, |MainSpec(G2)| = 1 and |MainSpec(G3)| = 2.

By Lemmas 2.3 and 2.4, we have |MainSpec(G4)| = |MainSpec(G4)| = |MainSpec(G3 ∪ K1)|. Since 0 is a simple non-
main eigenvalue of G3, we have |MainSpec(G3 ∪ K1)| = |MainSpec(G3)| + 1 = 3 by Lemma 2.5 and |MainSpec(G3)| = 2, and 
thus |MainSpec(G4)| = 3. Similarly, |MainSpec(G5)| = |MainSpec(G5)| = |MainSpec(G4 ∪ K1)|. By Lemma 2.9, we have 0 /∈
Spec(G4). Then |MainSpec(G4 ∪ K1)| = |MainSpec(G4)| + 1 by Lemma 2.5. Thus |MainSpec(G5)| = 4 by |MainSpec(G4)| = 3.

Suppose |MainSpec(Gi−1)| = i − 2 for i ≥ 6. Now we show |MainSpec(Gi)| = i − 1.
By Lemmas 2.3 and 2.4, we have |MainSpec(Gi)| = |MainSpec(Gi)| = |MainSpec (Gi−1 ∪ K1)|.
3
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If i is even, then 0 is a simple non-main eigenvalue of Gi−1 by Lemma 2.9, and thus we have |MainSpec(Gi−1 ∪ K1)| =
|MainSpec(Gi−1)| + 1 = i − 1 by Lemma 2.5 and induction hypothesis.

If i is odd, then 0 /∈ Spec(Gi−1) by Lemma 2.9, and thus we have |MainSpec(Gi−1 ∪ K1)| = |MainSpec(Gi−1)| + 1 = i − 1
by Lemma 2.5 and induction hypothesis.

By Proposition 2.6, the rest part of the theorem is obvious. �
By Theorem 2.10, the graph Gn is an example for the cases t = 0, −1 of Problem 2.2, that is, −1 is the unique non-main 

eigenvalue of Gn if n is even, and 0 is the unique non-main eigenvalue of Gn if n is odd.
A graph G is called complement reducible (a cograph for short) if for any induced subgraph H of G with at least two 

vertices, either H or H is disconnected. Cographs have a characterization in terms of forbidden induced subgraphs: they are 
graphs containing no P4 as an induced subgraph [5]. Cographs are frequently studied in structural graph theory and have 
been rediscovered numerous times, see [2,16,30].

The following two lemmas are presented in [5] and improved by [4].

Lemma 2.11. ([4]) The class of cographs can be defined recursively as follows:
(i) A single vertex is a cograph.
(ii) If H1, H2 are two disjoint cographs, then so is their union H1 ∪ H2 .
(iii) If H1, H2 are two disjoint cographs, then so is their join H1�H2 .

Lemma 2.12. ([4]) If G is a cograph, then every non-trivial induced subgraph H of G has two vertices which are (co-)duplicate in H.

By the properties of the cographs, we have the following proposition.

Proposition 2.13. Let G be a cograph. Then any induced subgraph of G is a cograph.

Lemma 2.14. Let G be a cograph, then G is a cograph.

Proof. Suppose to the contrary, then G contains P4 as an induced subgraph. However, P4 ∼= P4 which implies G has P4 as 
an induced subgraph, and this contradicts with G is a cograph. �
Lemma 2.15. Let n ≥ 1. Then the graph Gn (Gn) is a cograph.

Proof. By Lemmas 2.3, 2.11 and 2.14, G1 ∼= K1 is a cograph, G2 ∼= G1 ∪ K1 is a cograph and so G2 is. Similarly, Gi ∼= Gi−1 ∪ K1
is a cograph and Gi is also a cograph for i ≥ 3. �

Next we characterize almost controllable cographs.
An automorphism of a graph G is a permutation σ of the vertex set V (G) such that the pair of vertices vi ∼ v j if and only 

if σ(vi) ∼ σ(v j). The set of automorphisms of G under the composition operation, form a group, called the automorphism 
group of G and denoted by Aut(G). It is well-known that a graph and its complement share the same automorphism group.

Lemma 2.16. ([10]) Controllable graphs have only trivial automorphism group.

By Lemmas 2.12 and 2.16, it is clear that there is no controllable cograph [11]. However, there exist almost controllable 
cographs. In fact, Gn (or Gn) is an almost controllable cograph by Theorem 2.10 and Lemma 2.15.

Lemma 2.17. ([12]) Let G be a graph of order n with n − 1 main eigenvalues, then its automorphism group Aut(G) is either trivial or 
generated by a transposition σ = (vi, v j) for some vi, v j ∈ V (G), where σ fixes all vertices w ∈ V (G)\{vi, v j}.

By the definition of the automorphism of a graph G and the relationship between G and Aut(G), we have the following 
result immediately.

Proposition 2.18. Let G be a graph of order n. Then G has a pair of vertices vi, v j such that NG−v j (vi) = NG−vi (v j) if and only 
if (vi, v j) ∈ Aut(G) for some i, j ∈ {1, 2, · · · , n}. In fact, such vi, v j is a pair of duplicate vertices in G if vi � v j , and a pair of 
co-duplicate vertices in G if vi ∼ v j .

By Lemma 2.17, if G is an almost controllable graph, then |Aut(G)| ∈ {1, 2}. Besides, if |Aut(G)| = 2, then G has a unique 
pair of vertices vi, v j such that NG−v j (vi) = NG−vi (v j) for some i, j ∈ {1, 2, · · · , n} by Proposition 2.18.
4
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Lemma 2.19. Let G be an almost controllable cograph of order n (≥ 2). Then G ∼= H ∪ K1 or G ∼= H�K1 , where H is a cograph of order 
n − 1. Especially, G ∼= H�K1 if H is disconnected.

Proof. By Lemma 2.11, we have G ∼= H1 ∪ H2 or G ∼= H1�H2 where H1, H2 are two disjoint cographs. If |V (Hi)| ≥ 2
for i ∈ {1, 2}, then each pair of (co-)duplicate vertices in Hi is also a pair of (co-)duplicate vertices in G , which implies 
|Aut(G)| > 2, and this contradicts G being almost controllable by Lemma 2.17. Then there is at most one Hi satisfies 
|V (Hi)| ≥ 2 for i ∈ {1, 2}, and thus G ∼= H ∪ K1 or G ∼= H�K1, where H is a cograph of order n − 1.

Now we show if H is disconnected with |V (H)| ≥ 2, then G ∼= H�K1. Suppose to the contrary, we have G ∼= H ∪ K1, 
where H is disconnected with |V (H)| ≥ 2. By Lemma 2.12 and G ∼= H ∪ K1, we know that every non-trivial connected 
component of H has two vertices which are (co-)duplicate in H and G . If there are at least two components in H with 
at least two vertices, then this will lead to a contradiction with G has a unique pair of vertices x, y such that NG−y(x) =
NG−x(y). If there is one component in H with at least two vertices, then we additionally have 2K1 in G , a contradiction. 
Obviously, H ∼= 2K1 can also lead to a contradiction. Thus G ∼= H�K1 if H is disconnected. �
Theorem 2.20. Let G be a cograph of order n ≥ 2. If G has a unique pair of vertices x, y such that NG−y(x) = NG−x(y), then G ∈
{Gn, Gn}.

Proof. It is obvious that (x, y) ∈ Aut(G), where x, y is a pair of duplicate vertices if x � y, and a pair of co-duplicate vertices 
if x ∼ y by Proposition 2.18.

For n = 2, then G ∼= P2 ∼= G2 or G ∼= 2K1 ∼= G2. Thus G ∈ {G2, G2}.
For n ≥ 3, by Lemma 2.12, Proposition 2.18 and G is a cograph, we can suppose (s, t) ∈ Aut(H) where H = G − x and 

|V (H)| ≥ 2.
Claim 1. y ∈ {s, t}.
Suppose to the contrary, y �= s and y �= t . Then V (H) = {s, t} ∪ V 1 ∪ V 2 where V 1 = {v|v ∼ s, v ∼ t}, V 2 = {v|v � s, v � t}. 

If y ∈ V 1, then x ∼ s, x ∼ t in G since (x, y) ∈ Aut(G). However, in this case we have (s, t) ∈ Aut(G), which contradicts the 
uniqueness of x, y. Similarly, if y ∈ V 2, then x � s, x � t in G , and this implies (s, t) ∈ Aut(G), a contradiction.

By Claim 1, we can suppose t = y, and thus (s, y) ∈ Aut(H).

Claim 2. If x ∼ y, then s � y; if x � y, then s ∼ y.
Suppose to the contrary, there are x ∼ y and s ∼ y in G . Since (x, y) ∈ Aut(G) and (s, y) ∈ Aut(H), we have x ∼ s and 

NG(x) = V 1 ∪ {y, s} where V 1 is defined in Claim 1. Then both x, s and y, s are pairs of co-duplicate vertices in G , which 
contradicts the uniqueness of x, y. By similar way, if x � y and s � y, then both x, s and y, s are pairs of duplicate vertices 
in G , a contradiction.

Claim 3. s, y is the unique pair of vertices of H such that NH−y(s) = NH−s(y).
Suppose to the contrary, there is an automorphism (s′, y) ∈ Aut(H) where s′ �= s.
If x ∼ y, then s � y and s′

� y by Claim 2, thus x � s and x � s′ by (x, y) ∈ Aut(G) and s′
� s by (s, y) ∈ Aut(H). 

Therefore, we have NH (s) = NH (y) = NH (s′) by (s, y) ∈ Aut(H) and (s′, y) ∈ Aut(H). Combining the above arguments, we 
can conclude that NG (s) = NG(s′), and thus s, s′ is a pair of duplicate vertices in G , which contradicts the uniqueness of 
x, y.

If x � y, then s ∼ y and s′ ∼ y by Claim 2. By similar arguments, we have x ∼ s, x ∼ s′ , s ∼ s′ and NG (s)\{s′} = NG(s′)\{s}. 
Thus s, s′ is a pair of co-duplicate vertices in G , which contradicts the uniqueness of x, y.

Claim 4. Let |V (H)| ≥ 2. Then the graphs G and H have the same number of components. Moreover, if G is disconnected, 
then G ∼= Q 1 ∪ K1 and H ∼= (Q 1 − x) ∪ K1 where Q 1, Q 1 − x are connected.

It is obvious that G and H have the same number of components by (x, y) ∈ Aut(G).
Now we prove the rest part of Claim 4. Let G ∼= Q 1 ∪ Q 2 ∪· · ·∪ Q l where Q i is connected (1 ≤ i ≤ l, l ≥ 2). By Lemma 2.12, 

Q i has at least one pair of (co-)duplicate vertices if |V (Q i)| ≥ 2 for i ∈ {1, · · · , l}. Suppose (ui, vi) ∈ Aut(Q i) for some i ∈
{1, 2, · · · , l} where (ui, vi) �= (x, y). Then N Q i−vi (ui) = N Q i−ui (vi) = NG−vi (ui) = NG−ui (vi), which implies (ui, vi) ∈ Aut(G), 
a contradiction. Thus there is at most one Q i has |V (Q i)| ≥ 2 and we can suppose G ∼= Q 1 ∪ (l − 1)K1 where l ≥ 2. However, 
if l ≥ 3 and |V (Q 1)| = 1, then G ∼= 3K1 has 3 pairs of duplicate vertices, a contradiction; if l ≥ 3 and |V (Q 1)| ≥ 2, then G
has at least 2 pairs of (co-)duplicate vertices, a contradiction. Thus G ∼= Q 1 ∪ K1.

We note that dG (x) = dG(y) ≥ 1 by (x, y) ∈ Aut(G). Then from this and G ∼= Q 1 ∪ K1, we have H = G − x ∼= (Q 1 − x) ∪ K1
where Q 1 − x is connected. Then Claim 4 holds.

Now we show G ∈ {Gn, Gn}.
From the above discussion, H is a cograph with a unique pair of vertices s, y such that NH−y(s) = NH−s(y), then we can 

conclude that there are Claim 1’- Claim 4’ between H and H − y (∼= H − s) which are similar to Claims 1-4.
Let V (G) = {v1, v2, · · · , vn}, where vn, vn−1 is the unique pair of vertices of G such that NG−vn−1 (vn) = NG−vn (vn−1). 

Also let Fn = G and Fi = G −{vn, vn−1, · · · , vi+1} for 2 ≤ i ≤ n −1. It is obvious that Fi (2 ≤ i ≤ n) are cographs. Then by the 
above arguments, each pair of graphs Fi , Fi−1 have 4 Claims, where vi, vi−1 is the unique pair of vertices of Fi (3 ≤ i ≤ n)

such that N Fi−vi−1 (vi) = N Fi−vi (vi−1).
5
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If G is connected, then F2 is a connected graph of order 2, which implies F2 ∼= P2 ∼= G2. By the relationships between F3
and F2, it is easy to find that F3 ∼= P3 ∼= G3. By the definition of Gn and the relationships between Fi and Fi−1 (3 ≤ i ≤ n), 
we have G ∼= Gn .

If G is disconnected, then G ∼= Q 1 ∪ K1 where Q 1 is a connected graph by Claim 4. Let dG (v1) = 0. Then dFi (v1) = 0
for i ∈ {2, 3, 4, · · · , n − 1}. Therefore, we have F2 is a disconnected graph of order 2, which implies F2 ∼= 2K1 ∼= G2. By the 
relationships between F3 and F2, it is easy to find that F3 ∼= P2 ∪ K1 ∼= G3. By the definition of Gn and the relationships 
between Fi and Fi−1 (3 ≤ i ≤ n), we have G ∼= Gn . �

Now we determine all almost controllable cographs.

Theorem 2.21. Let n ≥ 2. Then G is an almost controllable cograph of order n if and only if G ∼= Gn or G ∼= Gn.

Proof. If G ∼= Gn or G ∼= Gn , then G is an almost controllable cograph of order n by Theorem 2.10 and Lemma 2.15.
Let G be an almost controllable cograph of order n. Then by Lemma 2.17, Aut(G) is either trivial or generated by a 

transposition (x, y).
If Aut(G) is trivial, then G is not a cograph by Lemma 2.12.
If Aut(G) is generated by a transposition (x, y), then G has a unique pair of vertices x, y such that NG−y(x) = NG−x(y)

by Proposition 2.18. By Theorem 2.20, we have G ∈ {Gn, Gn}. Thus G ∼= Gn or G ∼= Gn . �
A threshold graph can be obtained from K1 by repeatedly performing one of the following two operations: (a) adding a 

new vertex adjacent to none of the former vertices; (b) adding a new vertex adjacent to all of the former vertices.
Let G be a threshold graph of order n and V (G) = {v1, v2, · · · , vn} where vi is the added vertex in the i-th step of the 

operations. We can use a {0, 1}-sequence b = (b1, b2, · · · , bn) to represent G , where bi = 0 if vi is a vertex not adjacent to 
any of the vertices in {v1, v2, . . . , vi−1} and bi = 1 if vi is adjacent to v j for 1 ≤ j ≤ i − 1. There is a considerable body of 
knowledge on the spectral properties of threshold graphs [1,24,25].

We note that the complement of a threshold graph is also a threshold graph since the complement of (b1, b2, · · · , bn) is 
(1 − b1, 1 − b2, · · · , 1 − bn). For example, (0, 1) ∼= P2, (1, 0) ∼= 2K1, (1, 1, 0) ∼= P2 ∪ K1, (0, 0, 1) ∼= P3.

It is well known that threshold graphs are characterized in terms of forbidden induced subgraphs: they are graphs 
without P4, C4 and 2K2 as induced subgraphs [18]. By the properties of threshold graphs and cographs, the following 
proposition is self-evident.

Proposition 2.22. A threshold graph is also a cograph.

Now we determine all almost controllable threshold graphs.

Theorem 2.23. Let n ≥ 2. Then G is an almost controllable threshold graph of order n if and only if G ∼= Gn or G ∼= Gn.

Proof. It is clear that G2 ∼= P2 is a threshold graph. Then by Lemma 2.3 and the definition of threshold graphs, we have 
G3 ∼= G2 ∪ K1, G4 ∼= G3 ∪ K1 ∼= G3�K1, G5 ∼= G4 ∪ K1, · · · , Gn−1 ∼= Gn−2 ∪ K1 (or Gn−1 ∼= Gn−2�K1), Gn ∼= Gn−1�K1 (or 
Gn ∼= Gn−1 ∪ K1) are threshold graphs. Therefore, by the fact that the complement of a threshold graph is also a threshold 
graph, we have Gn and Gn are threshold graphs for all n ≥ 2. By Theorem 2.10, we have Gn and Gn are almost controllable 
threshold graphs.

On the other hand, if G is an almost controllable threshold graph, then G is an almost controllable cograph by Proposi-
tion 2.22, and thus G ∼= Gn or G ∼= Gn by Theorem 2.21. �
3. Almost controllable 

√
5−1
2 -graphs

It is well known that connected graphs except for complete multipartite (including complete) graphs have the second 
largest eigenvalue greater than 0. The graph G with λ2(G) ≤ 1

3 ([3]), λ2(G) ≤ 1
2 ([33]) and λ2(G) ≤

√
5−1
2 ([8]) are character-

ized respectively.

A graph G with λ2(G) ≤
√

5−1
2 will be called 

√
5−1
2 -graphs. In [11], the authors proved that there are no controllable √

5−1
2 -graphs. In this section, we determine all almost controllable 

√
5−1
2 -graphs.

Lemma 3.1. ([8]) If G is a 
√

5−1
2 -graph and contains P4 as an induced subgraph, then any vertex v outside P4 is one of the four types 

a, b, c, d shown in Fig. 2.

Let a pendant vertex be a vertex of degree 1, and a next-to-pendant vertex be a vertex adjacent to a pendant vertex.
6
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Fig. 2. The types a,b, c,d in Lemma 3.1.

Lemma 3.2. ([13]) Let G be a graph which contains an induced subgraph H ∼= lP4 for l ≥ 1. Then G is not almost controllable if any 
vertex v ∈ V (G)\V (H) satisfies one of the following three cases:
(i) v is either adjacent to every vertex or no vertex of some P4;
(ii) v is adjacent to an even number of pendant vertices of H;
(iii) v is adjacent to an even number of next-to-pendant vertices of H.

Theorem 3.3. Let G be an almost controllable graph of order n (≥ 2) with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Then λ2(G) ≤
√

5−1
2 if and 

only if 2 ≤ n ≤ 8, and G ∈ {G2, G3, G4 , G5, G6, G7, G2, G3, G4, G5, G6, G7, G8}.

Proof. Let G be an almost controllable graph of order n (≥ 2) with λ2(G) ≤
√

5−1
2 . Then we show 2 ≤ n ≤ 8 and G ∈

{G2, G3, G4, G5, G6, G7, G2, G3, G4, G5, G6, G7, G8} by the following two cases.
Case 1. G contains P4 as an induced subgraph.

Then we have λ2(G) ≥ λ2(P4) =
√

5−1
2 by Lemma 2.8, and thus λ2(G) =

√
5−1
2 . By Lemmas 3.1 and 3.2, G is not almost 

controllable. Thus there is no such G .
Case 2. G does not contain P4 as an induced subgraph.
Then G is a cograph, and we have G ∈ {Gn, Gn} by Theorem 2.21. By direct calculation, we have λ2(G7) ≈ 0.537 and 

λ2(G8) ≈ 0.697, combining with Lemma 2.8 and the definition of Gn , we have λ2(G2) ≤ · · · ≤ λ2(G7) <
√

5−1
2 < λ2(G8) ≤

λ2(G9) ≤ · · · . By Lemmas 2.3 and 2.8, we have λ2(G2) ≤ · · · ≤ λ2(G8 ∼= G7 ∪ K1) <
√

5−1
2 < λ2(G9 ∼= G8 ∪ K1) ≤ λ2(G10) ≤ · · · .

Combining the above arguments, we have G ∈ {G2, G3, G4, G5, G6, G7} if G is connected with λ2(G) ≤
√

5−1
2 , and G ∈

{G2, G3, G4, G5, G6, G7, G8} if G is disconnected with λ2(G) ≤
√

5−1
2 .

On the other hand, suppose G is an almost controllable graph with λ2(G) ≤
√

5−1
2 . By the calculation in Case 2, we have 

G2, G3, G4, G5, G6, G7, G2, G3, G4, G5, G6, G7, G8 are almost controllable graphs with the second largest eigenvalue less than √
5−1
2 . �
By Theorem 3.3, we know that there is no almost controllable graph G with λ2(G) =

√
5−1
2 . Naturally, we propose 

Problem 3.5 based on Lemma 3.4.

Lemma 3.4. ([13]) Let G be a graph which contains an induced subgraph H ∼= lP5 for l ≥ 1. Then G is not almost controllable if any 
vertex v ∈ V (G)\V (H) satisfies one of the following three cases:
(i) v is either adjacent to every vertex or no vertex of some P5;
(ii) v is adjacent to an even number of pendant vertices of H;
(iii) v is adjacent to an even number of next-to-pendant vertices of H.

Problem 3.5. Characterize all almost controllable graphs G with 
√

5−1
2 < λ2(G) ≤ 1 = λ2(P5).

4. Cographs with n − 2 main eigenvalues

By the discussion in Section 2, cographs of order n with n (controllable), n − 1 (almost controllable) main eigenvalues 
are characterized. In this section, we study the cographs of order n with n − 2 main eigenvalues. Two vertices vi, v j ∈ V (G)

belong to the same orbit if there is an automorphism σ ∈ Aut(G) such that σ(vi) = v j .

Lemma 4.1. ([7]) The number of main eigenvalues of a graph G does not exceed the number of orbits into which V (G) is partitioned 
by the automorphism group Aut(G).

Theorem 4.2. Let G be a graph of order n (≥ 3) with n − 2 main eigenvalues. Then Aut(G) is one of the following cases where e is the 
identity transformation.
(i) Aut(G) = {e};
(ii) Aut(G) = {e, (u, v)};
7
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Fig. 3. The graphs Li for i ∈ {3,4,5,6,7,8}.

(iii) Aut(G) = {e, (u, p, q), (u, q, p)};
(iv) Aut(G) = {e, (u, p), (v, q), (u, p)(v, q)};
(v) Aut(G) = {e, (u, p)(v, q)}.

Proof. If G is a graph of order n with n − 2 main eigenvalues, then the number of orbits of V (G) is greater than or equal 
to n − 2 by Lemma 4.1.

If V (G) has n (or n − 1) orbits, then Aut(G) = {e} (or Aut(G) = {e, (u, v)}) is obvious by Lemma 2.17.
If V (G) has n − 2 orbits, then n − 2 vertices have been used since each orbit has at least one vertex, and thus the 

remaining 2 vertices, say p, q, must belong to some of the n − 2 orbits. If p, q are in the same orbit, then (u, p, q) ∈ Aut(G)

for some u ∈ V (G) which implies Aut(G) = {e, (u, p, q), (u, q, p)}. If p, q are not in the same orbit, then there exist u, v ∈
V (G) such that (u, p), (v, q) ∈ Aut(G) or (u, p)(v, q) ∈ Aut(G), and this implies Aut(G) = {e, (u, p), (v, q), (u, p)(v, q)} or 
Aut(G) = {e, (u, p)(v, q)}. �

Now we introduce a graph Ln of order n (n ≥ 3), and show that Ln and Ln are cographs of order n with n − 2 main 
eigenvalues.

As in Section 2, let n ≥ 3 and V (Gn−1) = {v1, · · · , vn−1}. We define Ln (n ≥ 3) as the graph of order n that is obtained 
from Gn−1 after adding a new vertex vn such that vn ∼ v for any v ∈ NGn−1 (vn−1), and vn ∼ vn−1 if and only if vn−1 ∼ vn−2. 
The graphs Li are shown in Fig. 3 for i ∈ {3, 4, 5, 6, 7, 8}.

From the definitions of Ln and Gn−1, we know that any two of {vn−2, vn−1, vn} is a pair of (co-)duplicate vertices in Ln , 
then Aut(Ln) = {e, (vn−2, vn−1, vn), (vn−2, vn, vn−1)}. Therefore, Ln (Ln) is a cograph by Gn−1 (Gn−1) is a cograph. Moreover, 
Ln (Ln) is a threshold graph by the definition of threshold graphs and (vn−2, vn−1, vn) ∈ Aut(Ln). It should be noted that 
Ln and its complement are cographs and threshold graphs, which can also be derived from Lemma 4.3 that will be proved 
below.

Next we show Ln (Ln) has n − 2 main eigenvalues for n ≥ 3.

Lemma 4.3. Let n ≥ 3. Then Ln+1 ∼= Ln ∪ K1 .

Proof. By the definition of Ln , we have Ln is obtained from Gn−1 after adding a new vertex vn such that vn ∼ v for any 
v ∈ NGn−1

(vn−1), and vn ∼ vn−1 if and only if vn−1 ∼ vn−2 in Gn−1.

Similarly, we have Ln+1 is obtained from Gn after adding a new vertex vn+1 such that vn+1 ∼ v for any v ∈ NGn
(vn), and 

vn+1 ∼ vn if and only if vn ∼ vn−1 in Gn . By Lemma 2.3 and the definition of Gn , we have Gn ∼= Gn−1 ∪ K1 and dGn
(v1) = 0, 

then dLn+1
(v1) = 0 is obvious. Thus Ln+1 − v1 is isomorphic to the graph that is obtained from Gn−1 after adding a new 

vertex v ′ such that v ′ ∼ v for any v ∈ NGn−1 (vn−1), and v ′ ∼ vn−1 if and only if vn−1 ∼ vn−2 in Gn−1. By the definition of 
Ln , we have Ln+1 − v1 ∼= Ln , and thus Ln+1 ∼= Ln ∪ K1 by dLn+1

(v1) = 0. �
Lemma 4.4. Let n ≥ 3. If n is even, then 0 is a non-main eigenvalue of Ln with multiplicity 2. If n is odd, then 0 /∈ Spec(Ln) and −1 is 
a non-main eigenvalue of Ln with multiplicity 2.

Proof. Let Spec(Ln) = {λ1, . . . , λn}, Spec(Gn−1) = {μ1, . . . , μn−1}, x1 = (0, . . . , 0, −1, 1, 0)T , x2 = (0, . . . , 0, −1, 0, 1)T are n-
dimensional vectors. Then we prove the results by the following two cases.

Case 1. n is even.
By the definitions of Ln and Gn−1, we know that any two of {vn−2, vn−1, vn} is a pair of duplicate vertices in Ln . Then it 

is easy to find that A(Ln)xi = 0 · xi for i ∈ {1, 2}. Thus 0 is an eigenvalue of Ln with multiplicity greater than or equal to 2.
Next we show 0 is an eigenvalue of Ln with multiplicity 2. Suppose the multiplicity of 0 is greater than 2, then there 

exists some i (2 ≤ i ≤ n − 1) such that λi−1 = λi = λi+1 = 0. Then we have 0 = λi−1 ≥ μi−1 ≥ λi = 0 ≥ μi ≥ λi+1 = 0 by 
Lemma 2.8. That is to say, 0 is an eigenvalue of Gn−1 with multiplicity greater than or equal to 2. This is a contradiction 
since 0 is a simple eigenvalue of Gn−1 by Lemma 2.9. Therefore, 0 is a non-main eigenvalue of Ln with multiplicity 2 by 
jT
n x1 = jT

n x2 = 0.
Case 2. n is odd.
8
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We will prove 0 /∈ Spec(Ln) by showing that the constant c′
n of P Ln (x) is non-zero. By the definitions of Ln and Gn−1, it 

is not hard to find that NLn (vi) = {v1, v3, v5, · · · , vi−1} if i (2 ≤ i ≤ n − 3) is even, and any two of {vn−2, vn−1, vn} is a pair 
of co-duplicate vertices.

Let H′
n be the set of all elementary subgraphs of Ln with n vertices. Now we consider the possible elementary subgraph 

H ∈ H′
n which contributes to c′

n by Lemma 2.7. It is not hard to find that there is only one H belongs to H′
n , where 

E(H) = {v1 v2, v3 v4, · · · , vn−4 vn−3, vn−2 vn−1, vn−2 vn, vn−1 vn} since NLn (vi) = {v1, v3, v5, · · · , vi−1} if i (2 ≤ i ≤ n − 3) is 
even. Therefore, H can only be isomorphic to n−3

2 K2 ∪ C3 which implies c′
n = (−1)

n−1
2 21 �= 0. Thus 0 /∈ Spec(Ln) if n is odd.

By the definitions of Ln and Gn−1, we know that any two of {vn−2, vn−1, vn} is a pair of co-duplicate vertices in Ln . Then 
it is easy to find that A(Ln)xi = −1 · xi for i ∈ {1, 2}. Thus −1 is an eigenvalue of Ln with multiplicity greater than or equal 
to 2.

Next we show −1 is a non-main eigenvalue of Ln with multiplicity 2. Suppose the multiplicity of −1 is great than 2, 
then there exists some i (2 ≤ i ≤ n − 1) such that λi−1 = λi = λi+1 = −1, and thus we have −1 = λi−1 ≥ μi−1 ≥ λi = −1 ≥
μi ≥ λi+1 = −1 by Lemma 2.8. That is to say, −1 is an eigenvalue of Gn−1 with multiplicity greater than or equal to 2. 
This is a contradiction since −1 is a simple non-main eigenvalue of Gn−1 by Theorem 2.10. Therefore, −1 is a non-main 
eigenvalue of Ln with multiplicity 2 by jT

n x1 = jT
n x2 = 0. �

Theorem 4.5. Let n ≥ 3. Then both Ln and Ln are cographs with n − 2 main eigenvalues. In fact, −1 is the non-main eigenvalue of Ln
with multiplicity 2 if n is odd, and 0 is the non-main eigenvalue of Ln with multiplicity 2 if n is even.

Proof. By direct calculation, L3 ∼= C3 and Spec(C3) = {2, −1, −1}, where 2 is the unique main eigenvalue. Similarly, L4 ∼= K1,3

and Spec(K1,3) = {√3, −√
3, 0, 0}, and only 

√
3, −√

3 are main eigenvalues.
Similar to the proof of Theorem 2.10, we have Ln and Ln are cographs with n − 2 main eigenvalues by Lemmas 2.4, 2.5, 

4.3 and 4.4.
The rest part of the theorem is obvious by Lemma 4.4. �
Now we study the cographs of order n with exactly n − 2 main eigenvalues.

Theorem 4.6. Let G be a cograph of order n (≥ 3) with exactly n − 2 main eigenvalues. Then G is one of the following four cases:
(i) G ∼= Ln or G ∼= Ln;
(ii) G ∼= H ∪ K1 or G ∼= H�K1 , where H is obtained from Gn−3 (or Gn−3) after adding 2 vertices vn−2, vn−1 and some edges such 
that Aut(H) =< (vn−4, vn−3), (vn−2, vn−1) >;
(iii) G ∼= Gi ∪ Gn−i or G ∼= Gi ∪ Gn−i for some i (2 ≤ i ≤ n − 2);
(iv) G ∼= Gi�Gn−i or G ∼= Gi�Gn−i for some i (2 ≤ i ≤ n − 2).

Proof. Case 1. Aut(G) = {e} or Aut(G) = {e, (u, v)}.
Then there is no such G by Lemmas 2.12, 2.16 and Theorems 2.10, 2.20.
Case 2. Aut(G) = {e, (u, p)(v, q)}.
Then there is no such G by Lemma 2.12.
Case 3. Aut(G) = {e, (u, p, q), (u, q, p)}.
Then any two of {u, p, q} is a pair of (co-)duplicate vertices in G . It is easy to find that G − u (∼= G − p ∼= G − q) has 

a unique pair of vertices p, q such that NG−{u,q}(p) = NG−{u,p}(q). Combining with G − u is a cograph, we have G − u ∈
{Gn−1, Gn−1} by Theorem 2.20. The same conclusion applies to G − p, G − q. Then (i) holds by the definition of Ln .

Case 4. Aut(G) = {e, (u, p), (v, q), (u, p)(v, q)}.
By Lemma 2.11, we have G ∼= H1 ∪ H2 or G ∼= H1�H2, where H1, H2 are cographs.
Subcase 4.1. (u, p), (v, q) ∈ Aut(H1).
Then |V (H2)| = 1, otherwise H2 has (co-)duplicate vertices by Lemma 2.12 and this contradicts with Aut(G) =

{e, (u, p), (v, q), (u, p)(v, q)}. Thus G ∼= H1 ∪ K1 or G ∼= H1�K1, where H1, K1 are cographs. It is easy to find that H1 −{u, p}
(or H1 − {v, q}) is a cograph with a unique pair of vertices v, q such that NH1−{u,p,q}(v) = NH1−{u,p,v}(q) (or u, p such that 
NH1−{v,q,p}(u) = NH1−{v,q,p}(p)). Thus H1 − {u, p} ∈ {Gn−3, Gn−3} (or H1 − {v, q} ∈ {Gn−3, Gn−3}). Then (ii) holds.

Subcase 4.2. (u, p) ∈ Aut(H1) and (v, q) ∈ Aut(H2).
Then H1 (or H2) is a cograph with a unique pair of vertices u, p (or v, q) such that NH1−p(u) = NH1−u(p) (or NH2−q(v) =

NH2−v (q)). Thus H1 ∈ {Gi, Gi} and H2 ∈ {Gn−i, Gn−i} by Theorem 2.20 for 2 ≤ i ≤ n − 2.
If G ∼= H1 ∪ H2, then G has n − 2 main eigenvalues if and only if MainSpec(H1) ∩ MainSpec(H2) = ∅, and thus H1 ∼=

Gi, H2 ∼= Gn−i cannot be both true since 0 ∈ MainSpec(Gi) ∩ MainSpec(Gn−i) for 2 ≤ i ≤ n − 2. Then (iii) holds.
If G ∼= H1�H2, then |MainSpec(G)| = |MainSpec(H1�H2)| = |MainSpec(H1 ∪ H2)| = n − 2 if and only if MainSpec(H1) ∩

MainSpec(H2) = ∅, and thus H1 ∼= Gi, H2 ∼= Gn−i cannot be both true since 0 ∈ MainSpec(Gi) ∩ MainSpec(Gn−i) for 2 ≤ i ≤
n − 2. Then (iv) holds. �
Example 4.7. Let n ≥ 5, Wn ∼= H ∪ K1 be the graph of order n, H ∼= Gn−3 ∪ 2K1. Suppose dH (vn−2) = dH (vn−1) = 0. It is 
easy to check that Aut(H) =< (vn−4, vn−3), (vn−2, vn−1) >. Thus G ∼= Wn is a cograph belonging to (ii) of Theorem 4.6. By 
9
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Theorem 2.10, Wn ∼= Gn−3 ∪ 3K1 has n − 3 main eigenvalues, where {−1, 0, 0} are the non-main eigenvalues if n is odd, and 
{0, 0, 0} are the non-main eigenvalues if n is even.

Example 4.8. Let H be a graph of order 4 that is obtained from G2 after adding vertices p, q and edges such that N(p) =
N(q) = V (G2), in fact, H ∼= P3�K1. Then G ∼= H�K1 is a cograph of order 5 which belongs to (ii) of Theorem 4.6 by 
Aut(H) =< (v1, v2), (p, q) >. However, by calculation, Spec(G) = {1 + √

7, 1 − √
7, −1, −1, 0}, and only 1 + √

7, 1 − √
7 are 

main eigenvalues.

Examples 4.7 and 4.8 demonstrate that (ii) of Theorem 4.6 does not provide a characterization of cographs with n − 2
main eigenvalues. On the other hand, we did not find the graph G belongs to case (iii) (or (iv)) of Theorem 4.6 such that 
|MainSpec(G)| < n −2. This suggests that not all the cographs satisfying (ii) of Theorem 4.6 are the cographs of order n with 
n − 2 main eigenvalues, but the cographs satisfying (iii) (or (iv)) of Theorem 4.6 are likely to be the all cographs of order n
with n − 2 main eigenvalues. We therefore propose the following problem.

Problem 4.9. Characterize the cographs of order n (≥ 3) with exactly n − 2 main eigenvalues.
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