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1. Introduction

Throughout this paper, G is a simple graph with vertex set V (G) = {v1, · · · , vn} and 
edge set E(G). If the vertices vi and vj are adjacent, we write vi ∼ vj , then e = vivj is 
an edge belonging to E(G) and we say vi (vj) is incident to e. We say that two edges 
of G are adjacent if they are incident to a common vertex. Let |V (G)| be the order of 
G and |E(G)| be the number of edges in G. We say that G is empty if |V (G)| = 0, and 
null if |E(G)| = 0. Let NG(u) (N(u) for short) be the neighbourhood set of u in G. 
Two vertices u, v are called duplicate vertices if u � v and N(u) = N(v), co-duplicate
vertices if u ∼ v and N(u)\{v} = N(v)\{u}. The distance between vertices u and v
in G, denoted by dG(u, v), is the length of the shortest u − v path in G. The diameter
diam(G) of a connected graph G is the maximum distance between two vertices of G. 
The complement of a graph G is denoted by G. Suppose V ′ ⊆ V (G), the induced subgraph
of G with respect to V ′ is a graph with vertex set V ′ and edge set E′, where vivj ∈ E′

if vivj ∈ E(G) for any vi, vj ∈ V ′, G − V ′ is the graph obtained from G after deleting 
each vertex v ∈ V ′ and all edges that are incident to v. Let Kn, K1,n−1, Cn, Pn be the 
complete graph, star, cycle, path of order n, respectively.

Let A(G) = [aij ] be the n × n adjacency matrix of G where aij = 1 if vi ∼ vj and 
aij = 0 otherwise. The eigenvalues of G are the eigenvalues of its adjacency matrix A(G). 
The spectrum of G is the multiset of all eigenvalues of G, and we denote by Spec(G). 
An eigenvalue λ of G of order n is said to be a main eigenvalue if its eigenspace is not 
orthogonal to the all-ones vector j = [1, 1, . . . , 1]T of length n, and an eigenvector x of 
G is a main eigenvector if jTx �= 0. By [4], all main eigenvalues of G are distinct.

For a connected graph G, since its adjacency matrix A(G) is irreducible, the famous 
Perron-Frobenius Theorem ensures that the largest eigenvalue of G is always main. In 
1978, Cvetković proved that G has exactly one main eigenvalue if and only if G is regular. 
Besides, he posed the following long-standing problem: characterize the graphs of order 
n with exactly k (2 ≤ k ≤ n) main eigenvalues [4].

There are a series of papers characterizing the graphs with exactly 2, n − 1, n main 
eigenvalues. All trees, unicyclic, bicyclic and tricyclic graphs with exactly two main 
eigenvalues are characterized in [12–14], and for the other relevant results, one can refer 
to Feng et al. [9], Hagos [15], Hayat et al. [16], Lepović [19], etc. For graphs with all 
eigenvalues main, Cvetković et al. defined them as controllable graphs through their 
correlation with control theory [5], and for the relevant results, we refer the readers to 
Cvetković et al. [5,6], Farrugia [8] and Stanić [22]. For graphs of order n with n −1 main 
eigenvalues, Wang, Liu and Wang defined them as almost controllable graphs [23], and 
for the recent research on almost controllable graphs, one can refer to [7,18,20,23].

A graph G is called reconstructible if it can be determined from the knowledge only 
of all one-vertex-deleted subgraphs. In [11], the authors proved that a graph G of order 
n is reconstructible if all but at most one of the eigenvalues of A(G) are simple, with the 
corresponding eigenvectors not orthogonal to jn. Thus characterizing the graphs with 
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exactly k main eigenvalues (especially k = n −1, n) is of great importance as such graphs 
are reconstructible.

In this paper, we focus on almost controllable graphs and the paper is organized as 
follows. In Section 2, we study the properties of almost controllable graphs. In Sections 3
and 4, we show that the diameters of the complements of (almost) controllable trees, 
unicyclic and bicyclic graphs are less than or equal to 3 and determine all complements 
with diameter 3. In Section 5, we propose two conjectures about the (almost) controllable 
graphs for further research. In Section 6, we determine the integral almost controllable 
graphs.

2. Preliminaries

An automorphism of a graph G is a permutation σ of the vertex set V (G) such that 
the pair of vertices vi ∼ vj if and only if σ(vi) ∼ σ(vj). The set of automorphisms of 
G under the composition operation, form a group, called the automorphism group of G
and denoted by Aut(G). Let |Aut(G)| be the order of Aut(G). It is well-known that a 
graph and its complement share the same automorphism group.

Lemma 2.1 ([7]). Let G be a graph of order n with n − 1 main eigenvalues, then its 
automorphism group Aut(G) is either trivial or generated by a transposition σ = (vi, vj)
fixing all vertices w /∈ {vi, vj}. Furthermore, if vi � vj then 0 is an eigenvalue of G, and 
if vi ∼ vj then −1 is an eigenvalue of G.

By Lemma 2.1, we may conclude that for an almost controllable graph G, |Aut(G)| ∈
{1, 2}. Moreover, if Aut(G) =<(u, v) >, then u, v is the unique pair of vertices in G such 
that NG−v(u) = NG−u(v) by the definition of the automorphism of G. In fact, such u, v
is a pair of duplicate vertices in G if u � v, and a pair of co-duplicate vertices in G if 
u ∼ v.

It is proved that controllable graphs have only the trivial automorphism group [5]. 
By Lemma 2.1, we know that the graph with a trivial automorphism group may not be 
controllable. Similarly, we want to know whether a graph G with |Aut(G)| ∈ {1, 2} can 
only be controllable or almost controllable. The answer is no. An extreme example is the 
Frucht graph F on 12 vertices with Aut(F ) = 1 (see Fig. 1), which is neither controllable 
nor almost controllable [10]. It is easy to check that F is regular of degree 3, thus F has 
exactly 1 main eigenvalue 3. Moreover, there exist other regular asymmetric graphs with 
trivial automorphism group [25], and Fig. 2 lists the graphs with the least number of 
vertices.

Before considering the properties of almost controllable graphs, we give two lemmas 
about controllable graphs first.

Let a pendant vertex be a vertex of degree 1, and a next-to-pendant vertex be a vertex 
adjacent to a pendant vertex.
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Fig. 1. The Frucht graph F of order 12.

Fig. 2. The 4-regular asymmetric graphs of order 10.

Lemma 2.2 ([8]). Every controllable graph G on at least six vertices has P4 as an induced 
subgraph.

Lemma 2.3 ([6]). Let G be a controllable graph with P4 as an induced subgraph. If v is 
any vertex in G, then none of the following hold: (i) v is adjacent to all vertices of P4; 
(ii) v is adjacent to both pendant vertices of P4; (iii) v is adjacent to both next-to-pendant 
vertices of P4; (iv) v is non-adjacent to any vertex of P4.

By Lemmas 2.2 and 2.3, we know that controllable graphs have P4 as an induced 
subgraph but the graphs with P4 as an induced subgraph may not be controllable. 
Next we show a graph G with lP4 (l ≥ 1) as an induced subgraph may not be almost 
controllable.

Proposition 2.4. Let G be a graph which contains an induced subgraph H (∼= lP4) for 
l ≥ 1. Then G is not almost controllable if any vertex v ∈ V (G)\V (H) satisfies one of 
the following three cases:
(i) v is either adjacent to every vertex or no vertex of some P4;
(ii) v is adjacent to an even number of pendant vertices of H;
(iii) v is adjacent to an even number of next-to-pendant vertices of H.

Proof. For l = 1, it is clear that G has an automorphism (u1, u4)(u2, u3), where P4 =
u1u2u3u4. Then the result holds by Lemma 2.1.

For l ≥ 2, by the structure of G, it is easy to find two non-main eigenvectors x1 and 
x2 of G with corresponding eigenvalues −1−

√
5

2 , −1+
√

5
2 , respectively, where

x1 = (ξ1, · · · , ξ1︸ ︷︷ ︸, 0, · · · , 0)T , x2 = (ξ2, · · · , ξ2︸ ︷︷ ︸, 0, · · · , 0)T ,

l l
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Fig. 3. The graph G in Example 2.5.

ξ1 = (−1, 1+
√

5
2 , −1−

√
5

2 , 1)T , ξ2 = (−1, 1−
√

5
2 , −1+

√
5

2 , 1)T and the first 4l entries of x1, x2
correspond to the vertices of H. �
Example 2.5. Let G be the graph of order 11 shown in Fig. 3. It is clear that G has 
an induced subgraph H ∼= 2P4 with V (H) = {1, 2, 3, 4, 5, 6, 7, 8}, and the connection 
ways between {9, 10, 11} and V (H) satisfy the cases of Proposition 2.4. By computer 
calculation, the automorphism group of G is trivial, and the eigenvalues of G are the roots 
of irreducible polynomials x6−x5−9x4+12x2+2x −2, x3−4x −2 and −1±

√
5

2 . Moreover, 
−1±

√
5

2 are the only two non-main eigenvalues and then G is not almost controllable.

Furthermore, we show a graph G with lP5 (l ≥ 1) as an induced subgraph may not 
be almost controllable by the following result.

Proposition 2.6. Let G be a graph which contains an induced subgraph H (∼= lP5) for 
l ≥ 1. Then G is not almost controllable if any vertex v ∈ V (G)\V (H) satisfies one of 
the following three cases:
(i) v is either adjacent to every vertex or no vertex of some P5;
(ii) v is adjacent to an even number of pendant vertices of H;
(iii) v is adjacent to an even number of next-to-pendant vertices of H.

Proof. Similar to the proof of Proposition 2.4, it is easy to find two non-main eigenvectors 
x3 and x4 of G with corresponding eigenvalues −1, 1, respectively, where

x3 = (ξ3, · · · , ξ3︸ ︷︷ ︸
l

, 0, · · · , 0)T , x4 = (ξ4, · · · , ξ4︸ ︷︷ ︸
l

, 0, · · · , 0)T ,

ξ3 = (−1, 1, 0, −1, 1)T , ξ4 = (−1, −1, 0, 1, 1)T and the first 5l entries of x3, x4 correspond 
to the vertices of H. �
Example 2.7. Let G be the graph of order 15 shown in Fig. 4. It is clear that G has 
an induced subgraph H ∼= 2P5 with V (H) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the con-
nection ways between {11, 12, 13, 14, 15} and V (H) satisfy the cases of Proposition 2.6. 
By computer calculation, |Aut(G)| = 2, the eigenvalues of G are the roots of irreducible 
polynomial x10−15x8−4x7+71x6+28x5−119x4−44x3+54x2+4x −4 and ±

√
2, 0, ±1. 

Moreover, −1, 0, 1 are the only three non-main eigenvalues of G, thus G is not almost 
controllable.
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Fig. 4. The graph G in Example 2.7.

3. Almost controllable trees and unicyclic graphs

In this section, we study the diameters of the complements of almost controllable 
trees and unicyclic graphs, show diam(G) ∈ {2, 3} if G is an almost controllable tree 
or an almost controllable unicyclic graph, and determine the graphs with diam(G) = 3. 
Furthermore, as a by-product, we show diam(G) = 2 if G is a controllable tree or a 
controllable unicyclic graph.

The following results are useful and interesting.

Lemma 3.1 ([17]). If diam(G) ≥ 3, then diam(G) ≤ 3.

Lemma 3.2 ([21]). A graph G and its complement G have the same number of main 
eigenvalues.

Proposition 3.3. Let G be a graph with the complement G. Then diam(G) = 2 if and 
only if for any edge uv ∈ E(G), there is a vertex w ∈ V (G) satisfies w � u and w � v

in G. In other words, diam(G) �= 2 if and only if there is an edge uv ∈ E(G) such that 
N(u) ∪N(v) = V (G).

Proof. If for any edge uv ∈ E(G), there is a vertex w satisfies w � u and w � v in 
G, then there is a uwv path in G which implies dG(u, v) = 2. On the other hand, any 
two non-adjacent vertices of G will be adjacent in G. Thus we have diam(G) = 2. The 
necessity is obvious and we complete the proof. �
Lemma 3.4. Let T be a tree of order n. If |Aut(T )| = 1, then diam(T ) = 2.

Proof. We prove this by indicating that any two adjacent vertices of T have at least one 
common non-adjacent vertex in T by Proposition 3.3.

Suppose to the contrary, there are two vertices u ∼ v in T such that N(u) ∪N(v) =
V (T ). Firstly, for any vertices w ∈ V (T )\{u, v}, w ∼ u and w ∼ v can not be both 
true, otherwise there will be a C3 and this contradicts with T being a tree. Secondly, the 
subgraph T ′ induced by the vertex set V (T )\{u, v} is null, otherwise each pair of adjacent 
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Fig. 5. The graph T1.

vertices of T ′ will form a C3 with u (v) or a C4 with u, v in T , and this contradicts with T
being a tree. Therefore, T is a star K1,n if N(u) = {v} (or N(v) = {u}) or a double-star 
otherwise.

For n = 4, T must be isomorphic to P4 or K1,3. However, |Aut(P4)| > 1, |Aut(K1,3)| >
1 and this contradicts with |Aut(T )| = 1.

For n ≥ 5, there will be at least one pair of duplicate vertices of degree 1 that are 
both adjacent to u or v in T , which contradicts with |Aut(T )| = 1.

Combining the above arguments, we have diam(T ) = 2. �
Since the automorphism group of controllable graphs is trivial [5], we have the follow-

ing corollary by Lemma 3.2 and Lemma 3.4.

Corollary 3.5 ([22]). Let T be a controllable tree distinct from K1. Then T is a control-
lable graph whose diameter is equal to 2.

Theorem 3.6. Let T be an almost controllable tree of order n (≥ 4). Then diam(T ) ∈
{2, 3}. Moreover, diam(T ) = 3 if and only if T ∼= T1 (see Figure 5).

Proof. By Lemma 2.1 and T is almost controllable, we have |Aut(T )| ∈ {1, 2}.
Case 1: |Aut(T )| = 1.
We can directly get diam(T ) = 2 by Lemma 3.4.
Case 2: |Aut(T )| = 2.
Since the star K1,n−1 is the only tree with diameter 2, we have diam(T ) ≥ 3 since 

|Aut(K1,n−1)| = 2 if and only if n = 3. Then diam(T ) ∈ {2, 3} by Lemma 3.1.
From the above two cases, we have diam(T ) ∈ {2, 3}. Now we show the rest part of 

the result. Clearly, it is easy to check that T1 is almost controllable with diam(T1) = 3.
If T is almost controllable with diam(T ) = 3, we will show that T ∼= T1. By Lemma 2.1, 

we can suppose Aut(T ) =< (u, v) >. Then u, v is the unique pair of duplicate vertices 
in T , and d(u) = d(v) = 1 since there will be a cycle induced by u, v and their common 
neighbours if d(u) = d(v) > 1. Let V ′ = V (T )\(N(w) ∪ {w}) where u ∼ w. Clearly, 
N(w)\{u, v} �= ∅ by n ≥ 4 and V ′ �= ∅ by diam(T ) ≥ 3. Moreover, the subgraph 
induced by N(w) is null, otherwise, there is at least a cycle C3 induced by w and 
N(w). By Proposition 3.3 and diam(T ) �= 2, T has an edge xy ∈ E(T ) such that 
N(x) ∪ N(y) = V (T ). Since u, v are pendant vertices, we suppose xy = ww1 such 
that N(w) ∪ N(w1) = V (T ) where w1 ∈ N(w)\{u, v}. Then d(w1) > 1, otherwise 
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(w1, u) ∈ Aut(T ) and (w1, v) ∈ Aut(T ), which contradicts with |Aut(T )| = 2. Let p ∼ w1
where p ∈ V ′.

Next we show that N(w) = {u, v, w1}. If there is a vertex w2 ∈ N(w)\{u, v, w1}, then 
d(w2) > 1 otherwise (w2, u) ∈ Aut(T ). We can suppose w2 ∼ t, then t ∼ w or t ∼ w1, 
and thus there will be a cycle induced by w, w1, w2, t, a contradiction.

Finally, we show that V (T ) = {u, v, w, w1, p}. Suppose to the contrary, there is a 
vertex r ∈ V (T )\{u, v, w, w1, p}, then r ∼ w1 by N(w) ∪N(w1) = V (T ) and |N(w)| = 3. 
If d(r) > 1, then r ∼ p or r ∼ r′ where r′ ∈ V (T )\{u, v, w, w1, p, r}. If r ∼ p, then r, p, w1
will induce a cycle C3, a contradiction. If r ∼ r′, then r′ ∼ w1 and r, r′, w1 will induce a 
cycle C3, a contradiction. Hence d(r) = 1. Similarly, we can deduce that d(p) = 1. Thus 
(p, r) ∈ Aut(T ), a contradiction. Thus V (T ) = {u, v, w, w1, p} and T ∼= T1. �

Let Dn denote the Dynkin graph of order n ≥ 4, a tree obtained from the path of 
order n −1 by adding a pendant edge at the second vertex [24]. Then we show that there 
exist almost controllable tree T such that diam(T ) = 2 by Example 3.7.

Example 3.7 ([24]). The tree Dn has n − 2 main eigenvalues if 4|n and n − 1 main 
eigenvalues otherwise.

It is easy to check that diam(D5) = 3 by D5 ∼= T1, and Dn is an almost controllable 
tree with diam(Dn) = 2 if 4 � n and n �= 5.

Next we consider the diameters of the complements of unicyclic graphs.

Lemma 3.8. Let G be a unicyclic graph with the unique cycle C. If G has an edge uv
such that N(u) ∪N(v) = V (G), then we have:

(i) G − {u, v} has no cycle;
(ii) C ∼= C3 or C ∼= C4, furthermore, if C ∼= C4, then uv ∈ E(C).

Proof. (i) Suppose to the contrary, G −{u, v} has a cycle C ′. Since |V (C ′)| ≥ 3, for any 
two vertices w1 ∼ w2 of C ′, u, v, w1, w2 will induce a cycle C3 or C4, which contradicts 
with G being unicyclic.

(ii) Let C ∼= Ci for i ≥ 3. Next we prove i ∈ {3, 4}. Clearly, u ∈ V (C) or v ∈ V (C) or 
uv ∈ E(C) by (i).

Firstly, we show that if u ∈ V (C) and v /∈ V (C), then i = 3. Otherwise, if i ≥ 4
then there exists a vertex w ∈ V (C) satisfying dC(w, u) = 2. Since w is adjacent to u or 
v, which implies G has another cycle C3 or C4, and this contradicts G being unicyclic. 
Secondly, if u /∈ V (C) and v ∈ V (C), then i = 3 is similar. Finally, we show that 
if uv ∈ E(Ci), then i ≤ 4. Otherwise, if i ≥ 5, then there exists a vertex s ∈ V (C)
satisfying dC(s, u) = 2, and s is adjacent to u or v, which implies G has another cycle 
C3 or C4, a contradiction.

Thus C ∼= C3 or C ∼= C4, and if C ∼= C4, then uv ∈ E(C). �
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Lemma 3.9. Let G be a unicyclic graph of order n (≥ 5). If |Aut(G)| = 1, then diam(G) =
2.

Proof. By Proposition 3.3, we just need to show that any two adjacent vertices of G
have at least one common non-adjacent vertex in G.

Suppose to the contrary, there are two vertices u ∼ v in G such that N(u) ∪N(v) =
V (G). Since u, v and each pair of adjacent vertices of G − {u, v} will induce a cycle C3
or C4, we have |E(G − {u, v})| ≤ 1 by G is unicyclic. Let C be the unique cycle of G. 
Then C ∼= C3 or C ∼= C4 by Lemma 3.8.

If uv /∈ E(C), then C ∼= C3 by Lemma 3.8. Let w1, w2 ∈ V (C). Then d(w1) =
d(w2) = 2 by |E(G − {u, v})| ≤ 1. Now w1, w2 is a pair of co-duplicate vertices in G, 
which contradicts with |Aut(G)| = 1.

If uv ∈ E(C3), then |E(G −{u, v})| = 0. Therefore, for any vertex pi ∈ V (G)\{u, v, w}
where w ∼ u, w ∼ v, we have d(pi) = 1 by G is unicyclic. For n = 5, let V (G) =
{u, v, w, p1, p2}. Then (u, v)(p1, p2) ∈ Aut(G) if p1 ∼ u, p2 ∼ v, (u, v)(p1, p2) ∈ Aut(G) if 
p1 ∼ v, p2 ∼ u, and (p1, p2) ∈ Aut(G) if both p1 and p2 are adjacent to u (or v), all cases 
contradict with |Aut(G)| = 1. For n ≥ 6, G has at least one pair of duplicate vertices 
pi, pj where both pi and pj are adjacent to u (or v), which contradicts with |Aut(G)| = 1.

If uv ∈ E(C4), then |E(G −{u, v})| = 1. Similarly, for any vertex pi ∈ V (G)\{u, v, w1, 
w2} where w1 ∼ u, w2 ∼ v, w1 ∼ w2, we have d(pi) = 1 by G is unicyclic. For n = 5, w1, v
(if pi ∼ u) or w2, u (if pi ∼ v) is a pair of duplicate vertices in G, a contradiction. For n =
6, let V (G) = {u, v, w1, w2, p1, p2}. Then G has an automorphism (u, v)(w1, w2)(p1, p2)
if p1 ∼ u, p2 ∼ v (or p1 ∼ v, p2 ∼ u), and has an automorphism (p1, p2) if both p1 and 
p2 are adjacent to u (or v), all cases contradict with |Aut(G)| = 1. For n ≥ 7, G has at 
least one pair of duplicate vertices pi, pj where both pi and pi are adjacent to u (or v), 
a contradiction.

Hence G has no edge uv such that N(u) ∪ N(v) = V (G), and we complete the 
proof. �

Similar to Corollary 3.5, we have the following corollary by Lemmas 3.2 and 3.9.

Corollary 3.10. Let G be a controllable unicyclic graph of order n (≥ 5). Then G is a 
controllable graph with diam(G) = 2.

Theorem 3.11. Let G be an almost controllable unicyclic graph of order n (≥ 5). Then 
diam(G) ∈ {2, 3}. Moreover, diam(G) = 3 if and only if G ∼= Ui (i = 1, 4, 5, 6)
(see Figure 6).

Proof. We consider the following two cases according to the automorphism groups by 
Lemma 2.1. Let C be the unique cycle of G. It is easy to check that U1,U4,U5,U6 are 
almost controllable, and diam(Ui) = 3 for i ∈ {1, 4, 5, 6}.

Case 1: |Aut(G)| = 1.
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Fig. 6. The graphs Ui (i = 1, 2, 3, 4, 5, 6).

We have diam(G) = 2 by Lemma 3.9 directly.
Case 2: |Aut(G)| = 2.
By Lemma 2.1, we can suppose Aut(G) =< (u, v) >. Then u, v is the unique pair of 

(co-)duplicate vertices in G. Clearly, we have d(u) = d(v) ≤ 2, otherwise there will be at 
least three cycles induced by {u, v} and N(u), a contradiction.

Subcase 2.1: d(u) = d(v) = 1.
We will show that G can only be isomorphic to U1. First we state a fact: if H is a 

unicyclic graph that is obtained by a unicyclic graph H ′ after adding a new vertex x, 
then d(x) = 1.

Let V ′ = V (G)\({w} ∪N(w)) where u ∼ w, v ∼ w. Note that N(w)\{u, v} �= ∅ since 
|V (G)| ≥ 5. We claim that V ′ �= ∅, otherwise G ∼= K+

1,n−1 where K+
1,n−1 is obtained 

by K1,n−1 after adding an edge, but |Aut(K+
1,n−1)| > 2 for n ≥ 5, this contradicts with 

|Aut(G)| = 2. Let w1 ∼ w, p ∼ w1 where p ∈ V ′.
For n = 5, it is evident that there is no such unicyclic graph G of order 5.
For n = 6, G can only be obtained by T1 after adding a vertex x and two edges. 

Moreover, w, w1, p and x must induce the cycle C, which will result in G possibly being 
isomorphic to U1, U2, U3 (see Fig. 6). It is easy to check that |Aut(U1)| = 2, |Aut(U2)| > 2
and |Aut(U3)| > 2. By calculation, U1 is almost controllable with diam(U1) = 3. Thus 
in this subcase, G can only be isomorphic to U1, and diam(G) = 3.

For n = 7, G can only be obtained by T1 after adding 2 vertices s1, s2 and three edges. 
We now show diam(G) = 2 by proving that G has no edge e = xy ∈ E(G) such that 
N(x) ∪N(y) = V (G).

Suppose to the contrary, G has an edge e = xy such that N(x) ∪ N(y) = V (G), 
then e must incident to w. Without loss of generality, we suppose e = xy = ww1 since 
d(u) = d(v) = 1, N(u) = N(v) = {w} and p ∈ V ′.

We claim that if si ∼ w for i ∈ {1, 2}, then d(si) > 1. Otherwise, (si, u), (si, v) ∈
Aut(G), a contradiction. Therefore if s1 ∼ w, then s1 ∼ w1 or s1 ∼ p or s1 ∼ s2.

If s1 ∼ w and s1 ∼ w1, then w, w1, s1 induce a cycle C3. Now s2 can only be adjacent 
to w1 since d(s2) = 1. Then (s2, p) ∈ Aut(G), a contradiction.
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If s1 ∼ w and s1 ∼ p, then w, w1, s1, p induce a cycle C4. Then s2 ∼ w1, and G is 
isomorphic to the graph that is obtained by U2 after joining a pendant vertex to w1. By 
calculation, G has 5 main eigenvalues in this case, a contradiction.

If s1 ∼ w and s1 ∼ s2, then s2 ∼ w or s2 ∼ w1. It is easy to check that (s1, s2) ∈
Aut(G) if s2 ∼ w, or G has 5 main eigenvalues if s2 ∼ w1, a contradiction.

If s1 � w, then s1 ∼ w1 and we consider the case s2 � w, s2 ∼ w1 since all other 
cases are as same as the above. Now s1 ∼ s2 or s1 ∼ p or d(s1) = 1, which implies 
(s1, s2) ∈ Aut(G) or (s1, p) ∈ Aut(G) or (p, s2) ∈ Aut(G), a contradiction.

Thus in this subcase, diam(G) = 2.
For n ≥ 8, G can only be obtained by T1 after adding n −5 vertices and n −4 edges. Let 

V (G)\V (T1) = {s1, · · · , sn−5} where n −5 ≥ 3, and H = G[s1, · · · , sn−5] be the subgraph 
of G that is induced by the vertex set {s1, · · · , sn−5}. We now show diam(G) = 2 by 
proving that G has no edge e = xy ∈ E(G) such that N(x) ∪N(y) = V (G).

Suppose to the contrary, G has an edge e = xy such that N(x) ∪ N(y) = V (G). 
Similarly, we can suppose e = xy = ww1. Then si (1 ≤ i ≤ n − 5) is adjacent to 
at least one of {w, w1}. Clearly, d(si) ≥ 2 if si ∼ w for 1 ≤ i ≤ n − 5, otherwise 
(si, u), (si, v) ∈ Aut(G), a contradiction. Besides, we have |E(H)| ≤ 1 since G is unicyclic 
and each pair of adjacent vertices si ∼ sj and w, w1 will induce a cycle in G.

If |E(H)| = 0, then si, w, w1, p must induce a cycle for some i ∈ {1, · · · , n − 5}, and 
we suppose i = 1. Then d(sj) = 1 and sj ∼ w1 for j ∈ {2, · · · , n − 5} by the above 
discussion. Now (sj , sk) ∈ Aut(G) for j, k ∈ {2, · · · , n − 5}, a contradiction.

If E(H) = 1, we can suppose E(H) = {s1s2}, then s1s2 ∈ E(C3) or s1s2 ∈ E(C4) by 
Lemma 3.8. In each case, we have d(sj) = 1 and sj ∼ w1 for j ∈ {3, · · · , n − 5}, and 
then (sj , p) ∈ Aut(G), a contradiction.

Thus in this subcase, diam(G) = 2.
Subcase 2.2: d(u) = d(v) = 2.
Then u, v ∈ V (C), C ∼= C3 if u ∼ v and C ∼= C4 if u � v. We will show that 

diam(G) = 3 if and only if G ∼= Ui (i = 4, 5, 6), and diam(G) = 2 otherwise. Clearly, U4, 
U5, U6 are almost controllable with diam(U4) = diam(U5) = diam(U6) = 3, and we only 
need show diam(G) = 2 if G /∈ {U4, U5, U6} by proving that G has no edge e = xy such 
that N(x) ∪N(y) = V (G).

Subcase 2.2.1: u ∼ v.
Let V ′ = V (G)\({w} ∪N(w)), where u ∼ w, v ∼ w. Then N(w)\{u, v} �= ∅ by n ≥ 5, 

and V ′ �= ∅ by a similar reason to Subcase 2.1. We can suppose w ∼ w1, w1 ∼ p where 
p ∈ V ′.

Let G /∈ {U4, U5, U6}. If there exists an edge e = xy ∈ E(G) such that N(x) ∪N(y) =
V (G), without loss of generality, we can suppose e = xy = ww1 since d(u) = d(v) = 2, 
u ∼ v, u ∼ w, v ∼ w and p ∈ V ′. Let V1 = V (G)\{u, v, w, w1, p}.

If V1 = ∅, then G ∼= U4, it is a contradiction by G /∈ {U4, U5, U6}.
If V1 �= ∅, then for any s ∈ V1, d(s) = 1 by G is unicyclic. We note that d(p) = 1, 

otherwise w, w1, p, p′ will induce a cycle where p′ ∼ p for p′ ∈ V1, a contradiction. Thus 
s � w1 where s ∈ V1, otherwise (s, p) ∈ Aut(G), a contradiction. Therefore d(w1) = 2
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Fig. 7. All bicyclic graphs of order 5.

and s ∼ w for any s ∈ V1. For n = 6, we have G ∼= U5, and this contradicts with 
G /∈ {U4, U5, U6}. For n ≥ 7, we have (si, sj) ∈ Aut(G) where si, sj ∈ V1, a contradiction.

Thus in this subcase, diam(G) = 2 if G /∈ {U4, U5, U6}, and then diam(G) = 3 if and 
only if G ∼= Ui (i = 4, 5).

Subcase 2.2.2: u � v.
Then C ∼= C4 and let V (C) = {u, v, w, r} where N(u) = N(v) = {w, r}. Let V ′ =

V (G)\({w, r} ∪N(w) ∪N(r)). Since n ≥ 5, N(w)\{u, v} �= ∅ or N(r)\{u, v} �= ∅, we can 
suppose w1 ∈ N(w)\{u, v}.

Let G /∈ {U4, U5, U6}. If there exists an edge e = xy ∈ E(G) such that N(x) ∪N(y) =
V (G), without loss of generality, we can suppose e = xy = uw since d(u) = d(v) = 2
and u ∼ w, u ∼ r, v ∼ w, w1 ∼ w. Furthermore, d(w1) = 1 and d(s) = 1 for any 
s ∈ V (G)\{u, v, w, r, w1} by G is unicyclic, and thus s ∼ w by d(u) = 2.

If N(r)\{u, v} = ∅, then G ∼= U6 if d(w) = 3, and (s, w1) ∈ Aut(G) if d(w) ≥ 4 for 
any s ∈ V (G)\{u, v, w, r, w1}, a contradiction.

If N(r)\{u, v} �= ∅, then we have another cycle induced by u, w, r, s′ where s′ ∈
N(r)\{u, v}, and this contradicts the fact that G is unicyclic.

Thus in this subcase, diam(G) = 2 if G /∈ {U4, U5, U6}, and then diam(G) = 3 if and 
only if G ∼= U6.

Combining the above arguments, we have diam(G) ∈ {2, 3}, and diam(G) = 3 if and 
only if G ∼= Ui (i = 1, 4, 5, 6). �
4. Almost controllable bicyclic graphs

In this section, we show diam(G) ∈ {2, 3} if G is an almost controllable bicyclic graph 
of order n (≥ 6), and determine the graphs with diam(G) = 3. By the way, the result 
about the controllable bicyclic graphs is obtained.

All bicyclic graphs of order 5 are isomorphic to Xi (i = 1, 2, 3, 4, 5) (see Fig. 7) and 
only X1, X2 are almost controllable. Moreover, diam(X2) = 3 but X1 is disconnected. 
Thus we consider bicyclic graphs of order greater than 5.

Lemma 4.1. Let G be a bicyclic graph with circumference k and order n (≥ 6). If G has 
an edge uv ∈ E(G) such that N(u) ∪N(v) = V (G), then we have:

(i) G − {u, v} has no cycle;
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Fig. 8. The graphs Bs,t
i , 1 ≤ i ≤ 11.

(ii) The circumference k ∈ {3, 4, 5, 6}, and there exist integers s (≥ 0), t (≥ 0), i
(1 ≤ i ≤ 11) such that G ∼= Bs,t

i (see Fig. 8).

Proof. (i) The proof is similar to (i) of Lemma 3.8 and we omit it.
(ii) Let Ck be the cycle of G with the longest length k. We complete the proof by the 

following three cases.
Case 1: u ∈ V (Ck) and v /∈ V (Ck).
Let V1 = V (Ck) ∪{v}, G1 = G[V1] be the subgraph of G that is induced by V1. Without 

loss of generality, we suppose w1u, w2u ∈ E(Ck). Then for any w ∈ V1\{u, v, w1, w2}, 
wu ∈ E(G1) or wv ∈ E(G1) by N(u) ∪N(v) = V (G), and thus |E(G1)| ≥ |V1| +(|V1| −4)
since E(Ck) ∪ {uv} ⊆ E(G1) and V1 = V (Ck) ∪ {v}. On the other hand, |E(G1)| ≤
|E(G)| − (|V (G)| −|V1|) since for any vertex w′ ∈ V (G)\V1, w′u ∈ E(G) or w′v ∈ E(G). 
Then we have |V1| ≤ 5 and thus |V (Ck)| ≤ 4 by |E(G)| = |V (G)| + 1. In this case, there 
exist s (≥ 0), t (≥ 0) such that G ∼= Bs,t

i for i ∈ {1, 2, 3}.
Case 2: u /∈ V (Ck) and v ∈ V (Ck).
Similar to Case 1 by the symmetry of u, v, and we omit it.
Case 3: u ∈ V (Ck) and v ∈ V (Ck).
Now we show that the length of the longest path between u and v is less than or 

equal to 4. Let P = uw1w2 · · ·wl−1v be the longest path with length l (l ≥ 2) between 
u and v. Then C = P + uv is a cycle with length l + 1, and thus (l + 1) + (l − 4) ≤
|E(G[P ])| ≤ |E(G)| − (|V (G)| − |V (P )|) = l + 1 by |E(G)| = |V (G)| + 1 and for any 
vertex w ∈ V (G)\{u, v, w1, wl−1}, wu ∈ E(G) or wv ∈ E(G), it implies l ≤ 4.

Let {u1, · · · , us} = N(u)\{w1, v}, {v1, · · · , vt} = N(v)\{wl−1, u}. By G is a bicyclic 
graph of order n (≥ 6) and N(u) ∪N(v) = V (G), we complete the proof by the following 
three subcases.

Subcase 3.1: l = 2.
Then uv ∈ E(C3), where V (C3) = {u, v, w1}. If there are some i (1 ≤ i ≤ s) and 

some j (1 ≤ j ≤ t) such that ui = vj , then G ∼= Bs,t
4 for s ≥ 1, t ≥ 1, s + t ≥ 4; if there 

are some i, j (1 ≤ i, j ≤ s) such that ui ∼ uj (or some i, j such that vi ∼ vj , where 
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1 ≤ i, j ≤ t), then G ∼= Bs,t
5 for s ≥ 2, t ≥ 0, s + t ≥ 3; if there is some i (1 ≤ i ≤ s)

such that ui ∼ w1 (or some j such that vj ∼ w1, where 1 ≤ j ≤ t), then G ∼= Bs,t
6 for 

s ≥ 1, t ≥ 0, s + t ≥ 3. In this subcase, k ∈ {3, 4}.
Subcase 3.2: l = 3.
Then uv ∈ E(C4), where V (C4) = {u, v, w1, w2}. If w1 ∼ v or w2 ∼ u, then G ∼= Bs,t

6
for s ≥ 1, t ≥ 0, s + t ≥ 3; if there are some i (1 ≤ i ≤ s) and some j (1 ≤ j ≤ t) such 
that ui = vj , then G ∼= Bs,t

7 for s ≥ 1, t ≥ 1, s + t ≥ 3; if there are some i, j (1 ≤ i, j ≤ s)
such that ui ∼ uj (or some i, j such that vi ∼ vj , where 1 ≤ i, j ≤ t), then G ∼= Bs,t

8 for 
s ≥ 2, t ≥ 0; if there are some i (1 ≤ i ≤ s) and some j (1 ≤ j ≤ t) such that ui ∼ vj , 
then G ∼= Bs,t

9 for s ≥ 1, t ≥ 1; if there is some i (1 ≤ i ≤ s) such that ui ∼ w2 (or some 
j such that vj ∼ w2, where 1 ≤ j ≤ t), then G ∼= Bs,t

10 for s ≥ 1, t ≥ 0, s + t ≥ 2. In this 
subcase, k ∈ {4, 5, 6}.

Subcase 3.3: l = 4.
Then uv ∈ E(C5), where V (C5) = {u, v, w1, w2, w3}, and w2u ∈ E(G) or w2v ∈ E(G), 

and thus G ∼= Bs,t
11 for s ≥ 0, t ≥ 0, s + t ≥ 1. In this subcase, k = 5. �

Lemma 4.2. Let G be an almost controllable bicyclic graph of order n (≥ 6). If |Aut(G)| =
1, then diam(G) ∈ {2, 3}. Moreover, diam(G) = 3 if and only if G ∼= B1,1

11 .

Proof. If diam(G) = 2, then the result follows.
Now we show diam(G) �= 2 if and only if G ∼= B1,1

11 . By calculation, B1,1
11 is almost 

controllable with diam(B1,1
11 ) = 3.

If diam(G) �= 2, then G has an edge e = uv such that N(u) ∪ N(v) = V (G) by 
Proposition 3.3, thus we have G ∼= Bs,t

i for some s (≥ 0), t (≥ 0) and i (1 ≤ i ≤ 11) by 
Lemma 4.1.

Since |Aut(G)| = 1, G has no (co-)duplicate vertices or other automorphisms except 
for the identity transformation. However, it is easy to check that graphs Bs,t

1 , Bs,t
2 , Bs,t

3 , 
Bs,t

4 , Bs,t
5 , Bs,t

8 , Bs,t
10 all have at least one pair of (co-)duplicate vertices of degree 2, and 

Bs,t
9 has an automorphism (w1, u1)(w2, v1), which contradicts with |Aut(G)| = 1. Then 

we consider G ∼= Bs,t
j for j ∈ {6, 7, 11}, and some s ≥ 0, t ≥ 0.

Case 1: G ∼= Bs,t
6 for s ≥ 1, t ≥ 0, s + t ≥ 3.

For n = 6, G can only be isomorphic to B3,0
6 , B2,1

6 , B1,2
6 . However, both B3,0

6 and B1,2
6

have one pair of duplicate vertices of degree 1, B2,1
6 is controllable by calculation. For 

n ≥ 7, G has at least one pair of duplicate vertices of degree 1 that are both adjacent to 
u (or v). Then we have G � Bs,t

6 for s ≥ 1, t ≥ 0, s + t ≥ 3.
Case 2: G ∼= Bs,t

7 for s ≥ 1, t ≥ 1, s + t ≥ 3.
For n = 6, G ∼= B2,1

7 , but B2,1
7 is controllable by calculation. For n = 7, G can 

only be isomorphic to B2,2
7 or B3,1

7 . However, (u, v)(w1, w2)(u2, v2) ∈ Aut(B2,2
7 ) and 

(u2, u3) ∈ Aut(B3,1
7 ). For n ≥ 8, G has at least one pair of duplicate vertices of degree 1

that are both adjacent to u (or v). Then G � Bs,t
7 for s ≥ 1, t ≥ 1, s + t ≥ 3.

Case 3: G ∈ Bs,t
11 for s ≥ 0, t ≥ 0, s + t ≥ 1.
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For n = 6, G can only be isomorphic to B1,0
11 or B0,1

11 . However, B1,0
11 (∼= B2,1

7 ) and B0,1
11

are controllable by calculation. For n = 7, G can only be isomorphic to B2,0
11 , B1,1

11 , B0,2
11 . 

However, both B2,0
11 and B0,2

11 have one pair of duplicate vertices of degree 1, and B1,1
11 is 

almost controllable with diam(B1,1
11 ) = 3. For n ≥ 8, G has at least one pair of duplicate 

vertices of degree 1 that are both adjacent to u (or v). Thus we have G ∼= B1,1
11 .

Combining the above discussion, we have diam(G) ∈ {2, 3}, and diam(G) = 3 if and 
only if G ∼= B1,1

11 . �
Let G be a controllable graph. Then |Aut(G)| = 1 by [23]. By the proof of Lemma 4.2, 

we have the following result.

Theorem 4.3. Let G be a controllable bicyclic graph of order n (≥ 6). Then diam(G) ∈
{2, 3}. Moreover, diam(G) = 3 if and only if G ∈ {B2,1

6 , B2,1
7 , B0,1

11 }.

Lemma 4.4. Let G be an almost controllable bicyclic graph of order n ≥ 6, B =
{B0,1

2 , B1,1
2 , B2,1

5 , B3,1
5 , B3,1

6 , B2,2
6 , B3,1

7 , B2,1
8 , B3,1

8 , B2,1
10 , B0,2

11 }. If |Aut(G)| = 2, then 
diam(G) ∈ {2, 3}. Moreover, diam(G) = 3 if and only if G ∈ B.

Proof. By calculation, each graph in B is an almost controllable bicyclic graph with 
diam(G) = 3.

If diam(G) = 2, then the result follows.
Suppose diam(G) �= 2, now we show G ∈ B. Firstly, G has an edge uv such that 

N(u) ∪N(v) = V (G) by Proposition 3.3, and then there exist some s (≥ 0), t (≥ 0) and 
i (1 ≤ i ≤ 11) such that G ∼= Bs,t

i by Lemma 4.1.
By Lemma 2.1, we can suppose Aut(G) =< (x, y) >. Then x, y is the unique pair of 

(co-)duplicate vertices in G, and thus it is easy to check that d(x) = d(y) ≤ 3, otherwise 
G has |E(G)| > |V (G)| + 1 which contradicts with G being bicyclic. Now we consider 
the following three cases.

Case 1: d(x) = d(y) = 1.
It is easy to check that there exist some s (≥ 0), t (≥ 0) such that G ∼= Bs,t

i for 
i ∈ {6, 7, 11} since Aut(G) =<(x, y) >.

If G ∼= Bs,t
6 for s ≥ 1, t ≥ 0, s + t ≥ 3, then G ∈ {B3,1

6 , B2,2
6 }.

If G ∼= Bs,t
7 for s ≥ 1, t ≥ 1, s + t ≥ 3, then G ∈ {B3,1

7 , B3,2
7 }. However, B3,2

7 has 6
main eigenvalues with |V (B3,2

7 )| = 8 by calculation, a contradiction. Thus G ∼= B3,1
7 .

If G ∼= Bs,t
11 for s ≥ 0, t ≥ 0, s +t ≥ 1, then G ∈ {B2,0

11 , B2,1
11 , B0,2

11 , B1,2
11 }. However, both 

B2,1
11 and B1,2

11 have 6 main eigenvalues with |V (B2,1
11 )| = |V (B1,2

11 )| = 8 by calculation, a 
contradiction. Thus G ∈ {B2,0

11 , B0,2
11 }, where B2,0

11
∼= B3,1

7 .
Case 2: d(x) = d(y) = 2.
It is easy to check that there exist some s (≥ 0), t (≥ 0) such that G ∼= Bs,t

i for 
i ∈ {2, 4, 5, 8, 10} since each of the other graphs either has no such pair of vertices x, y
or satisfies |Aut(G)| > 2.

If G ∼= Bs,t
2 for s ≥ 0, t ≥ 0, s + t ≥ 1, then G ∈ {B0,1

2 , B1,1
2 }.
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Table 1
Number of connected almost controllable graphs G with diam(G) > 2.

Order Tree Unicyclic Bicyclic Tricyclic Tetracyclic Pentacyclic
5 1 2 2(1) 0 0 0
6 0 2 2 2 5(2) 3(2)
7 0 0 9 17 30(1) 38(3)
8 0 0 1 18 68 150
9 0 0 0 10 101 386
10 0 0 0 0 25 293
11 0 0 0 0 6 165
12 0 0 0 0 0 ?

If G ∼= Bs,t
4 for s ≥ 1, t ≥ 1, s + t ≥ 4, then there is no such G since |V (G)| ≥ 6 and 

|Aut(G)| = 2.
If G ∼= Bs,t

5 for s ≥ 2, t ≥ 0, s + t ≥ 3, then G ∈ {B2,1
5 , B3,1

5 }.
If G ∼= Bs,t

8 for s ≥ 2, t ≥ 0, then G ∈ {B2,1
8 , B3,1

8 }.
If G ∼= Bs,t

10 for s ≥ 1, t ≥ 0, s + t ≥ 2, then G ∼= B2,1
10 .

Case 3: d(x) = d(y) = 3.
It is easy to check that there is no such G by |V (G)| ≥ 6 and |Aut(G)| = 2.
Combining the above arguments, we have G ∈ B if diam(G) �= 2, and thus diam(G) =

3 if and only if G ∈ B, then diam(G) ∈ {2, 3}. �
By Lemmas 2.1, 4.2 and 4.4, we have the following result.

Theorem 4.5. Let G be an almost controllable bicyclic graph of order n (≥ 6). Then 
diam(G) ∈ {2, 3}. Moreover, diam(G) = 3 if and only if G ∈ {B1,1

11 } ∪ B.

5. Some problems for further research

In this section, based on the results in Sections 3 and 4, two conjectures about the 
(almost) controllable graphs are proposed.

For (almost) controllable trees, unicyclic and bicyclic graphs, we note that the diam-
eters of their complements are less than 4 by the discussion in Section 3 and Section 4. 
Naturally, we want to know if this result also holds for tricyclic, tetracyclic and penta-
cyclic (almost) controllable graphs. Then we calculate the number of tricyclic, tetracyclic 
and pentacyclic (almost) controllable graphs G of order less than 13 and diam(G) > 2
(see Table 1, Table 2), where the number a(b) in Table 1 indicates that b of the a graphs 
have disconnected complements.

During the calculation, we find that there are only four almost controllable pentacyclic 
graphs G1, G2, G3, G4 and one controllable tetracyclic graph G5 has connected comple-
ments with diam(Gi) > 3 (actually all equal to 4) for i ∈ {1, 2, 3, 4, 5} (see Fig. 9).

From Table 1 and Table 2, we propose two conjectures as follows.

Conjecture 1. Let t ≥ −1 and G be an almost controllable connected graph of order n
(≥ 5). If |E(G)| = n + t and diam(G) > 2, then n ≤ �3t+13�.
2
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Table 2
Number of connected controllable graphs G with diam(G) > 2.

Order Tree Unicyclic Bicyclic Tricyclic Tetracyclic Pentacyclic
5 0 0 0 0 0 0
6 0 0 3 3 1 0
7 0 0 0 8 14 17
8 0 0 0 5 31 108
9 0 0 0 0 6 100
10 0 0 0 0 2 51
11 0 0 0 0 0 2
12 0 0 0 0 ? ?

Fig. 9. Five (almost) controllable graphs Gi with diam(Gi) = 4 (i = 1, 2, 3, 4, 5).

Conjecture 2. Let t ≥ −1 and G be a controllable connected graph of order n (≥ 6). If 
|E(G)| = n + t and diam(G) > 2, then n ≤ 2t + 4.

Obviously, Conjecture 1 holds for t ∈ {−1, 0, 1} by Theorem 3.6, Theorem 3.11 and 
Theorem 4.5. Conjecture 2 holds for t ∈ {−1, 0, 1} by Corollary 3.5, Corollary 3.10 and 
Theorem 4.3.

6. Integral almost controllable graphs

A graph is called integral if its spectrum consists entirely of integers. In this section, 
all integral almost controllable graphs are determined.

The following lemmas are useful and interesting.

Lemma 6.1 (([6]). The only integral controllable graph is graph K1.

Lemma 6.2 ([6]). Let G be a graph with n vertices. If G has n distinct integral eigenvalues, 
then n ≤ 10.

Lemma 6.3. Let G be a graph of order n (≥ 2) with integral spectra. If G has n − 1
distinct eigenvalues, then n ≤ 13.

Proof. By G is an integral graph of order n with n −1 distinct eigenvalues, we know that 
G has n − 2 simple eigenvalues and an eigenvalue with multiplicity 2. Let Spec(G) =
{λ1, λ2, · · · , λn}. Then we complete the proof in the following two cases.

Case 1: n = 2t.
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It is evident that 
∑

1≤i≤n

λ2
i has the minimum value when Spec(G) = {02, ±1, · · · , ±(t −

1)}. Then we have 2 ≤ n ≤ 14 by solving inequalities

2 × n(n− 1)
2 ≥ 2|E(G)| =

∑
1≤i≤n

λ2
i ≥ t(t− 1)(2t− 1)

3 . (1)

If n = 14, then |E(G)| = 91 by inequalities (1), and thus G ∼= K14. However, K14 has 
exactly two distinct eigenvalues, a contradiction. Hence n ≤ 12 when n is even.

Case 2: n = 2t + 1.
Similarly, 

∑
1≤i≤n

λ2
i has the minimum value when Spec(G) = {02, ±1, · · · , ±(t − 1), t}. 

Then we have 2 ≤ n ≤ 13 by solving inequalities

2 × n(n− 1)
2 ≥ 2|E(G)| =

∑
1≤i≤n

λ2
i ≥ t(t− 1)(2t− 1)

3 + t2. � (2)

Lemma 6.4. There is no connected integral almost controllable graph of order 13.

Proof. Let G be an integral almost controllable graph of order 13. Then we have t = 6
and 78 > |E(G)| ≥ 73 by inequalities (2) of Lemma 6.3. Thus G can only be obtained 
by K13 after deleting at most 5 edges ei (i = 1, 2, 3, 4, 5).

If e1, e2, e3, e4, e5 have no common vertices in G, then there will be 3 vertices of 
degree 12 in G, and thus each two of the 3 vertices is a pair of co-duplicate vertices, 
which contradicts with |Aut(G)| ∈ {1, 2}.

If e1, e2, e3, e4, e5 have common vertices in G, or G is obtained by K13 after deleting 
less than 5 edges, then there are at least 4 vertices of degree 12 in G, and thus each two 
of these vertices of degree 12 is a pair of co-duplicate vertices, which contradicts with 
|Aut(G)| ∈ {1, 2}. �

Now we determine all integral almost controllable graphs.

Theorem 6.5. Let G be an integral almost controllable graph of order n. Then G ∈
{P2, 2K1, P2 ∪K1}.

Proof. We complete the proof by the following two cases.
Case 1: G is connected.
Since the main eigenvalues are different from each other, G has n − 1 or n distinct 

eigenvalues by G is almost controllable.
If G has n distinct eigenvalues, then n ≤ 10 by Lemma 6.2. All connected integral 

graphs of order up to 10 have been listed in [1], and only P2 is almost controllable with 
all distinct eigenvalues by calculation.

If G has n − 1 distinct eigenvalues, then n ≤ 13 by Lemma 6.3. All connected integral 
graphs of order up to 12 have been listed in [1–3], and there is no almost controllable 
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graph with n − 1 distinct eigenvalues with n ≤ 12 by calculation. Moreover, we have 
n �= 13 by Lemma 6.4.

Thus in this case, P2 is the unique connected almost controllable graph with integral 
spectra.

Case 2: G is disconnected.
Let l ≥ 2, G ∼= H1 ∪ H2 ∪ · · · ∪ Hl where Hi is a connected integral graph 

for i ∈ {1, · · · , l}. By the definition of main eigenvalues, it is easy to check that 

|MainSpec(G)| ≤
l∑

i=1
|MainSpec(Hi)| where MainSpec(G), MainSpec(Hi) denote the set 

of all main eigenvalues of G, Hi, respectively. Then there is at most one Hi (1 ≤ i ≤ l)
that is almost controllable and all others are controllable since G is almost controllable.

If all H1, H2, · · · , Hl are controllable, then G ∼= 2K1 by Lemma 6.1.
If there is exactly one Hi is almost controllable, then G ∼= P2 ∪K1 by Lemma 6.1 and 

Case 1. �
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