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Calvis has showed that the inner radius of univalency is 2k2 for a normal circular 
triangle with the smallest interior angle kπ, and 2[(n− 2)/n]2 for a regular n-sided 
polygon. In this paper, using these results and ideas introduced by Calvis, we study 
the inner radius of univalency of certain types of convex quadrilateral. We calculate 
that the inner radius of univalency of a convex quadrilateral P with side sequences 
aabb and interior angles kπ, 2kπ, kπ, 2π− 4kπ. The inner radius of univalency of an 
isosceles trapezoid with side sequences aaab and smallest interior angle kπ is also 
discussed.

© 2024 Published by Elsevier Inc.

1. Introduction

Let D be a domain in the complex plane C with at least two boundary points and ρD be its Poincaré 
density whose curvature is −4. Let H be the family of simply connected domains in C = C ∪ {∞} of 
hyperbolic type. For D ∈ H, by Schwarz-Pick lemma, we define the Poincaré density ρD(z) of D by

ρD(z) = |g′(z)| 
1 − |g(z)|2 ,

where g(z) is any conformal map from D onto the unit disk Δ = {z : |z| < 1}, and also denote the family 
of functions which are locally injective and meromorphic in D by M(D). For f(z) ∈ M(D), we define the 
Schwarzian derivative of f(z) by

Sf (z) =
(
f ′′(z)
f ′(z) 

)′
− 1

2

(
f ′′(z)
f ′(z) 

)2
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and the norm of Sf (z) by

‖Sf‖D = sup 
z∈D

{|Sf (z)|/ρD(z)2}.

The inner radius of univalency of domain D by Schwarzian derivative is defined by

σ(D) = sup{a : ‖Sf‖D ≤ a ⇒ f univalent in D}.

Nehari [15] has proved that if f(z) ∈ M(Δ) with ‖Sf‖Δ ≤ 2, then f is univalent in Δ. Hill [7] has showed 
that the constant C = 2 is sharp. Moreover, whenever ‖Sf‖Δ < 2, then not only f is univalent in Δ but 
also admits a quasiconformal extension in C (see [2] and [5]).

Several properties concerning Sf (z) are as follows.

(i) If T is a Möbius transformation, then ST ≡ 0.
(ii) For f, g ∈ M(D), we have

Sf◦g = Sf(g)(g′)2 + Sg.

Therefore we have σ(D) is Möbius equivalent since Sf◦T−1 = Sf (T−1) and ‖Sf◦T−1‖T (D) = ‖Sf‖D.
(iii) For each D ∈ H, σ(D) ≤ 2. Moreover σ(D) = 2 if and only if D = T (Δ), where T is a Möbius 

transformation (see [9]).
(iv) For each D ∈ H, then D is a quasidisk if and only if σ(D) > 0 (see [1] and [6]).

For more results related to Schwarzian derivative and pre-Schwarzian derivative (see [1], [4] and [8]).
For an angular domain Ak = {z : 0 < arg z < kπ}, Lehto [13] and Lehtinen [9] have shown that

σ(Ak) =
{

2k2, 0 < k ≤ 1,
4k − 2k2, 1 < k < 2.

For distinct points z1, z2 ∈ C, we let (z1, z2) denote the open line segment joining z1, z2 and [z1, z2] its 
closure.

We first define P . For any a, b > 0, make a circle of radius b with O as center. Fix three points w1, w2, w3
on the circle in clockwise direction such that the segments [w1, w2], [w2, w3] both have length a. Replace O
as w4, similarly, [w1, w4] and [w3, w4] both have length b. Consider the convex quadrilateral P with vertexes 
w1, w2, w3, w4 and side sequences aabb. Suppose that the interior angles of the convex quadrilateral P at 
vertexes w1, w2, w3, w4 are kπ, 2kπ, kπ, 2π− 4kπ respectively. The convex quadrilateral P is well-defined, if 
0 < 2π − 4kπ < π, i.e. 1

4 < k < 1
2 .

In this paper, we study the inner radius of univalency for the above convex quadrilateral P , and give the 
following results.

Theorem 1.1. Suppose that P is a convex quadrilateral with side sequences aabb and interior angles 
kπ, 2kπ, kπ, 2π − 4kπ for 1

4 < k < 1
2 . Then

σ(P ) =
{

2k2, 1
4 < k ≤ 2

5 ,

2(2 − 4k)2, 2
5 ≤ k < 1

2 .

Corollary 1.2. Suppose that P is a convex quadrilateral with side sequences aabb and interior angles 
kπ, 2kπ, kπ, 2π − 4kπ for 1

4 < k < 1
2 . Assuming that its smallest angle is απ where 0 < α ≤ 2

5 , then 
σ(P ) = 2α2.
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2. Preliminaries

Define an open (resp. closed) circular arc γ as the image in C of an open (resp. closed) line segment under 
a Möbius transformation. The support circle C(γ) is the circle or line in C which contains γ. A circular 
triangle is a Jordan domain D ⊂ C whose boundary is a union of three closed circular arcs and is not a 
union of any two circular arcs. Generally, we say that a circular triangle D is normal if for each pair γ1, γ2
of distinct sides of D we have

C(γ1) ∩ C(γ2) = {v, v′},

where v is a vertex of D and v′ ∈ C \D.
Lehtinen [12] studied the inner radius of univalency for domains bounded by conic sections by using 

geometric methods, and then Calvis [3] calculated σ(D) when D is a normal circular triangle or a regular 
n-sided polygon, and obtained the results as follows.

Lemma 2.1 ([3]). If D is a normal circular triangle whose smallest angle is kπ, then

σ(D) = 2k2.

Theorem 2.2 ([3]). If D is a regular n-sided polygon, then

σ(D) = 2
(
n− 2
n 

)2

.

Wieren [14] also obtained the inner radius of univalency for a regular n-sided polygon Pn by constructing 
the Schwarz-Christoffel transformations mapping Δ onto Pn, and proved that if R is an open rectangle with 
1 ≤ b 

a ≤ 1.52346 · · · , then R is a Nehari disk with σ(R) = σ(P4) = 1
2 . Also if H is an equiangular hexagon 

with side sequence baabaa and 1 ≤ b 
a ≤ 1.67117 · · · , then H is a Nehari disk with σ(H) = σ(P6) = 8

9 . 
Using these results, Shen complete Wieren’s results for the case where H is a hexagon, Zhu obtained the 
inner radius of univalency for rhombus with smallest interior angle kπ where 0 < k < 1

2 and proved that all 
rhombus are Nehari disk (see [16] and [17]).

Lehtinen gave a brief calculation about σ(D) when D is a regular n-sided polygon, and also obtained 
σ(D∗) when D∗ is the exterior of D (see [10]).

To achieve our result, we also need the following lemmas and propositions.

Lemma 2.3 ([3]). Let G ∈ H and b > 0. Suppose that for each pair of distinct points z1, z2 ∈ G there exists 
a G′ ∈ H with z1, z2 ∈ G′, G′ ⊂ G and σ(G′) ≥ b. Then

σ(G) ≥ b.

Lemma 2.4 ([3]). Let G1, G2 ∈ H, and suppose that for each pair of distinct points z1, z2 ∈ G2 there exists 
a T ∈ Möb with z1, z2 ∈ T (G1) and T (G1) ⊂ G2. Then

σ(G2) ≥ σ(G1).

A direct corollary follows below.

Corollary 2.5 ([11]). Assume A has a boundary angle kπ, 0 < k < 1, at a boundary point z0. Then σ(A) ≤
2k2.
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Recall that γ for a open circular arc and γ its closure. Denote the set of vertices of D ∈ H as V (D). We 
have the following crucial lemma.

Lemma 2.6 ([3]). Let v, v1 ∈ V (D) be adjacent vertexes of D and let v2 ∈ ∂D \ δ, where δ denotes the open 
edge (v1, v). Then there exists an open circular arc γ joining v1 and v2 and tangent to δ at v1 such that

γ ⊂ D

and

C(γ) ∩ ∂D = {v1, v2}.

Using the ideas introduced by Calvis, we also obtain a result with respect to isosceles trapezoid.

Theorem 2.7. Let a < b. Suppose that P is an isosceles trapezoid with side sequences aaab and smallest 
interior angle kπ for 0 < k ≤ 1

2 , then σ(P ) = 2k2.

Based on the above, we have the following propositions.

Proposition 2.8. Suppose that P is a convex quadrilateral defined as in Theorem 1.1 for 1
4 < k ≤ 2

5 . Then 
for arbitrary two points z1, z2 ∈ ∂P , P contains a domain D ∈ H with z1, z2 ∈ ∂D and σ(D) ≥ 2k2.

Proposition 2.9. Suppose that P is a convex quadrilateral defined as in Theorem 1.1 for 2
5 ≤ k < 1

2 . Then 
for arbitrary two points z1, z2 ∈ ∂P , P contains a domain D ∈ H with z1, z2 ∈ ∂D and σ(D) ≥ 2(2 − 4k)2.

3. Proof of Theorem 2.7

Proof. Suppose that P is defined as in Theorem 2.7. Since the smallest interior angle of P is kπ, we have 
σ(P ) ≤ 2k2 by Corollary 2.5. We now claim that for any z1, z2 ∈ P , there exists a domain D ∈ H with 
D ⊂ P such that z1, z2 ∈ ∂D and σ(D) ≥ 2k2. Therefore, by Lemmas 2.3 and 2.4 we have σ(P ) ≥ 2k2. 
Thus, it is sufficient to consider the case when z1, z2 ∈ ∂P .

Consider the case when z1, z2 are on different sides of P , particularly on non-adjacent sides of P . If 
z1 ∈ (w1, w2) and z2 ∈ (w3, w4), take a circular arc τ1 = � 

z1w4 to be tangent to (w1, w4) at point w4 and 
another circular arc τ2 = � 

z1w3 to be tangent to (w2, w3) at point w3. Then τ1 ∪ [w3, w4] ∪ τ2 bounds a 
circular triangle D1 ⊂ P with z1, z2 ∈ ∂P [see Fig. 1 on the left]. Clearly the angles of D1 at vertexes w3, w4
both are kπ. Denote the angle between (z1, w4) and (w1, w4) to be k1π, the angle between (z1, w3) and 
(w2, w3) to be k2π and the angle between (z1, w3) and (z1, w4) to be k3π. Then the angle of D1 at vertex z1
is (k1 + k2 + k3)π. We claim that (k1 + k2 + k3)π ≥ kπ, that is k3π ≥ π−kπ

2 . Denote the circumcircle of P
as circle O. Actually, the circumferential angle of chord (w3, w4) in circle O is π− 3kπ

2 , thus k3π ≥ π− 3kπ
2 . 

Since 0 < k ≤ 1
2 , we have π−kπ

2 ≤ π− 3kπ
2 . Therefore, D1 is a normal circular triangle with smallest interior 

angle kπ and σ(D1) = 2k2 by Lemma 2.1.
If z1 ∈ (w1, w4) and z2 ∈ (w2, w3), similarly we take a circular arc τ3 = � 

z1w2 to be tangent to (w1, w2) at 
point w2 and another circular arc τ4 = � 

z1w3 to be tangent to (w3, w4) at point w3. Then τ3 ∪ [w2, w3] ∪ τ4
bounds a circular triangle D2 ⊂ P with z1, z2 ∈ ∂D2 [see Fig. 1 on the right]. It is easy to see that the 
angles of D2 at vertexes w2, w3 are π − kπ, kπ respectively. Consider the angle of D2 at vertex z1. Denote 
the angle between (w1, w2) and (z1, w2) to be k1π, the angle between (w3, w4) and (z1, w3) to be k2π and 
the angle between (z1, w2) and (z1, w3) to be k3π. Thus the angle of D2 at vertex z1 is (k1 + k2 + k3)π. We 
claim that (k1 +k2 +k3)π ≥ kπ, that is k3π ≥ kπ

2 . It can be obtained from the fact that the circumferential 
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Fig. 1. z1, z2 on non-adjacent sides of P . 

Fig. 2. z1 ∈ (w1, w2), z2 ∈ (w3, w4). 

angle chord (w2, w3) in circle O is kπ2 . Therefore it is easy to show that D2 is normal with smallest interior 
angle kπ. By Lemma 2.1, σ(D2) = 2k2.

The other cases that z1 and z2 lie on adjacent sides of P are obvious since we can always find a normal 
circular triangle D ⊂ P or a domain D Möbius equivalent to an angular domain Ak such that σ(D) ≥ 2k2

and z1, z2 ∈ ∂D. We omit the construction of D here.
In conclusion, we complete the proof of Theorem 2.7. �

4. Proof of Proposition 2.8

Using Lemmas 2.1 and 2.6, we prove Proposition 2.8 as below.

Proof. For 1
4 < k ≤ 2

5 , the smallest interior angle of P is kπ. For any z1, z2 ∈ P , it is sufficient to consider 
the case when z1, z2 ∈ ∂P . We consider separately the following three cases: z1, z2 are on open sides of P , 
z1 or z2 is a vertex of P and z1, z2 are both vertexes of P .

Case A. Firstly, we consider the case where z1, z2 are on open sides of P . We separate into the following 
three subcases: z1, z2 are on non-adjacent open sides of P , z1, z2 are on adjacent open sides of P , z1, z2 are 
on the same open side of P .

Case A1. z1, z2 are on non-adjacent open sides of P . By the symmetry of P , it is sufficient to consider 
z1 ∈ (w1, w2), z2 ∈ (w3, w4). If 1

3 < k ≤ 2
5 , we first take a circular arc γ1 = � 

z1w3 to be tangent to (w2, w3)
at point w3 and a circular arc γ2 = � 

z1w4 to be tangent to (w1, w4) at point w4. We have γ1 ∪ γ2 ∪ [w3, w4]
bounds a domain D1 ⊂ P with z1, z2 ∈ ∂D1 [see Fig. 2 on the left]. Clearly the angles of D1 at w3, w4 are 
kπ, 2π− 4kπ respectively. Next we consider the angle of D1 at vertex z1. Denote the angle between (z1, w4)
and (w1, w4) to be k1π, the angle between (z1, w3) and (w2, w3) to be k2π and the angle between (z1, w3)
and (z1, w4) to be k3π. Then the angle of D1 at z1 is (k1 + k2 + k3)π. Since the length of (z1, w4) is always 
smaller than the length of (w3, w4). Denote the angle between (z1, w3) and (w3, w4) to be k4π. According 
to the law of Sines, k3π > k4π and k2π + k3π > kπ. Thus we have the angle of D1 at z1 is greater than kπ. 
Finally we have D1 is a normal circular triangle with smallest interior angle kπ. By Lemma 2.1, we have 
σ(D1) = 2k2.

If 1
4 < k ≤ 1

3 , connect the segment (z1, w4). γ1 is defined as above. Then [z1, w4]∪ γ1 ∪ [w3, w4] bounds a 
circular triangle D′

1 ⊂ P with z1, z2 ∈ ∂D′
1 [see Fig. 2 on the right]. The angles of D′

1 at vertexes w3 and w4
are not less than kπ. Consider the angle of D′

1 at vertex z1. Denote the angle between (z1, w3) and (w3, w4)
to be k1π and the angle between (z1, w3) and (z1, w4) to be k2π. Clearly k1π < k2π. Thus the angle of D′

1
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Fig. 3. z1 ∈ (w1, w2), z2 ∈ (w1, w4). 

at z1 is greater than kπ. We can see that D′
1 is a normal circular triangle with smallest interior angle kπ. 

By Lemma 2.1, we have σ(D′
1) ≥ 2k2.

Case A2. z1, z2 are on adjacent open sides. We consider separately the following three cases: z1 ∈ (w1, w2)
and z2 ∈ (w2, w3); z1 ∈ (w1, w2) and z2 ∈ (w1, w4); z1 ∈ (w1, w4) and z2 ∈ (w3, w4).

If z1 ∈ (w1, w2), z2 ∈ (w2, w3), take a circular arc γ3 = � 
w1w3 to be tangent to (w1, w4) and (w3, w4)

at point w1 and w3 respectively. Then [w1, w2] ∪ γ3 ∪ [w2, w3] bounds a circular triangle D2 ⊂ P with 
z1, z2 ∈ ∂D2. Clearly the angles of D2 at vertexes w1, w2, w3 are kπ, 2kπ, kπ respectively. Thus D2 is a 
normal circular triangle with smallest interior angle kπ and σ(D2) = 2k2 by Lemma 2.1.

If z1 ∈ (w1, w2), z2 ∈ (w1, w4), for 1
3 < k ≤ 2

5 , take a circular arc γ4 = � 
w2w4 to be tangent to (w3, w4)

at point w4. Then [w1, w2] ∪ γ4 ∪ [w1, w4] bounds a circular triangle D3 ⊂ P with z1, z2 ∈ ∂D3 [see Fig. 3
on the left]. It is clear that the angle of D3 at vertexes w1, w2, w4 are kπ, π − kπ, 2π − 4kπ respectively. 
Therefore D3 is normal with smallest interior angle kπ and σ(D3) = 2k2 by Lemma 2.1. For 1

4 < k ≤ 1
3 , 

consider in the triangle Δw1w2w4. Take a circular arc γ5 = � 
z2w2 to be tangent to (w2, w4) at point w2. 

Then [z2, w1]∪ γ5 ∪ [w1, w2] bounds a domain D′
3 ⊂ P with z1, z2 ∈ ∂D′

3 [see Fig. 3 on the right]. It is easy 
to see that the angle of D′

3 at vertex z2 is greater than kπ and the angles of D′
3 at vertexes w1, w2 are both 

kπ. Thus D′
3 is normal with smallest interior angle kπ and σ(D′

3) = 2k2 by Lemma 2.1.
If z1 ∈ (w1, w4), z2 ∈ (w3, w4), the proof is similar to the case where z1 ∈ (w1, w2), z2 ∈ (w2, w3), and so 

we omit it. 
Case A3. z1, z2 are on the same open side of P . We consider the following two cases: z1, z2 ∈ (w1, w2)

and z1, z2 ∈ (w1, w4). All above, we can find a domain D4 ⊂ P , which is Möbius equivalent to an angular 
domain Ak, such that z1, z2 ∈ ∂D4. Since the inner radius of univalency is Möbius equivalent, we have 
σ(D4) = σ(Ak) = 2k2.

Case B. Secondly, we consider the case when one of z1 and z2 is a vertex of P and the other lies on the 
open side of P . Similar to the proof of Case A, there always exists a domain D5 ⊂ P with z1, z2 ∈ ∂P , 
which is a normal circular triangle with smallest interior angle not less than kπ or Möbius equivalent to an 
angular domain Ak1 where k ≤ k1 < 1

2 . As above, we have σ(D5) ≥ 2k2.
Case C. Finally, we consider the case when z1, z2 are both vertexes of P . It is sufficient to consider the 

case where z1, z2 lie on different sides of P . We separate into the following two subcases: z1 = w1, z2 = w3

and z1 = w2, z2 = w4.
If z1 = w1, z2 = w3, we can join z1 and z2 by a pair of circular arcs such that the intersection points 

are w1, w3 and the angles at w1, w3 are both kπ. Take a circular arc γ6 connecting z1 and z2 to be tangent 
to (w1, w2) and (w2, w3) at w1 and w3 respectively. Also, take a circular arc γ7 connecting z1 and z2 to be 
tangent to (w1, w4) and (w3, w4) at w1 and w3 respectively. Then γ6 ∪ γ7 bounds a domain D6 ⊂ P with 
z1, z2 ∈ ∂D6. It is clear that D6 is Möbius equivalent to an angular domain Ak, therefore σ(D6) = 2k2.

If z1 = w2, z2 = w4, for 1
3 < k ≤ 2

5 , take circular arcs γ8 and γ9 connecting w2 and w4 to be tangent to 
(w1, w4) and (w3, w4) at point w4 respectively. Then γ8 ∪ γ9 bounds a domain D7 ⊂ P with z1, z2 ∈ ∂D7

[see Fig. 4 on the left]. In addition, D7 is Möbius equivalent to an angular domain A2−4k, thus σ(D7) =
2(2 − 4k)2 ≥ 2k2. For 1

4 < k ≤ 1
3 , we can similarly find a domain D′

7 ⊂ P with z1, z2 ∈ ∂D′
7 and D′

7 is 
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Fig. 4. z1 = w2, z2 = w4. 

Möbius equivalent to an angular domain A2k [see Fig. 4 on the right]. Thus we have σ(D7) = 2(2k)2 > 2k2. 

In conclusion, according to Case A−C and Lemma 2.1, we prove that for z1, z2 ∈ ∂P , there always exist 
a normal circular triangle D ⊂ P with smallest interior angle not less than kπ or a domain D ⊂ P Möbius 
equivalent to an angular domain Ak1 (k ≤ k1 < 1

2) such that z1, z2 ∈ ∂D and σ(D) ≥ 2k2. �

5. Proof of Proposition 2.9

Similar to the proof of Proposition 2.8, we give a brief proof of Proposition 2.9 in the following.

Proof. If 2
5 ≤ k < 1

2 , the smallest interior angle of P is 2π − 4kπ. Similar to the proof of Proposition 2.8, 
for any z1, z2 ∈ ∂P , we consider separately the following three cases: z1, z2 are on different open sides of P , 
z1, z2 are on the same open side of P and at least one of z1 and z2 is a vertex of P .

Case 1. z1, z2 are on different open sides of P . Firstly, we consider the case where z1, z2 are on non-
adjacent open sides. As in the proceeding section, it is sufficient to consider the case where z1 ∈ (w1, w2)
and z2 ∈ (w3, w4). Similar to Lemma 2.6, we take a circular arc γ1 = � 

z1w3 to be tangent to (w2, w3) at 
point w3 and a circular arc γ2 = � 

z1w4 to be tangent to (w1, w4) at point w4. Then γ1 ∪ [w3, w4]∪ γ2 bounds 
a circular triangle D1 ⊂ P with z1, z2 ∈ ∂D1. Clearly the angles of D1 at vertexes w3, w4 are kπ, 2π − 4kπ
respectively. According to the Law of Sines, the angle of D1 at vertex z1 is greater than kπ. Consequently, 
we have D1 is a normal circular triangle with smallest interior angle 2π− 4kπ, thus σ(D1) = 2(2− 4k)2 by 
Lemma 2.1.

Secondly, we consider the case where z1, z2 are on adjacent open sides of P . We separate into three 
subcases: z1 ∈ (w1, w2) and z2 ∈ (w2, w3); z1 ∈ (w1, w2) and z2 ∈ (w1, w4); z1 ∈ (w1, w4) and z2 ∈ (w3, w4).

If z1 ∈ (w1, w2) and z2 ∈ (w2, w3), take a circular arc γ3 = � 
w1w3 to be tangent to (w1, w4) and (w3, w4)

at points w1 and w3 respectively. Then it is easy to know that [w1, w2] ∪ γ3 ∪ [w2, w3] bounds a normal 
circular triangle D2 with smallest interior angle kπ. Thus σ(D2) = 2k2 ≥ 2(2 − 4k)2 by Lemma 2.1. The 
other two subcases are similar as above, so we omit them.

Case 2. z1, z2 are on the same open side of P . As in the proof of Proposition 2.8, we can always find a 
domain D3 ⊂ P with z1, z2 ∈ ∂D3, which is Möbius equivalent to an angular domain Ak1 , where 2 − 4k ≤
k1 < 1

2 . According to the Möbius equivalent of the inner radius of univalency, we have σ(D3) = σ(Ak1) =
2k2

1 ≥ 2(2 − 4k)2.
Case 3. At least one of z1, z2 is a vertex of P . Otherwise, it can reduce to the case where z1, z2 are on the 

same open side of P or on adjacent open sides of P . As in Case 1 and Case 2, there exist a normal circular 
triangle D4 ⊂ P with smaller interior angle not less than 2π − 4kπ or a domain D4 ⊂ P Möbius equivalent 
to an angular domain Ak1 (2 − 4k ≤ k1 < 1

2 ) such that z1, z2 ∈ ∂P and σ(D4) ≥ 2(2 − 4k)2.
According to Cases 1 − 3, we show that for any z1, z2 ∈ ∂P , there always exists a domain D ⊂ P with 

z1, z2 ∈ ∂D such that σ(D) ≥ 2(2 − 4k)2. �
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6. Proof of Theorem 1.1

Proof. For 1
4 < k ≤ 2

5 , P has smallest interior angle kπ. By Corollary 2.5, we have σ(P ) ≤ 2k2. By 
Proposition 2.8, Lemma 2.3 and Lemma 2.4, we have σ(P ) ≥ 2k2. Therefore σ(P ) = 2k2.

For 2
5 ≤ k < 1

2 , P has smallest interior angle 2π − 4kπ. By Corollary 2.5, we have σ(P ) ≤ 2(2 − 4k)2. 
By Proposition 2.9, Lemma 2.3 and Lemma 2.4, we have σ(P ) ≥ 2(2 − 4k)2. Therefore σ(P ) = 2(2 − 4k)2. 
Consequently, we show that

σ(P ) =
{

2k2, 1
4 < k ≤ 2

5 ,

2(2 − 4k)2, 2
5 ≤ k < 1

2 .

Corollary 1.2 follows directly from Theorem 1.1. �
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