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GROWTH OF SOLUTIONS OF SOME SECOND ORDER

DIFFERENTIAL EQUATIONS WITH ENTIRE

COEFFICIENTS

Zhi-Bo Huang, Ilpo Laine, and Jia-Ling Lin

Abstract. In this paper, we consider the differential equation

(∗) f ′′ +Af ′ +Bf = 0,

where A(z) and B(z) ̸≡ 0 are entire functions. Assume that A(z) is a
transcendental solution of ω′′ + P (z)ω = 0, where P (z) is a polynomial.

If B(z) satisfies extremal for Yang’s inequality and other conditions, then

every transcendental solution f of equation (*) has µ(f) = ∞. We also
investigate the relation between a small function and a differential poly-

nomial of f .

1. Introduction and main results

We assume that the reader is familiar with fundamental results and standard
notations of the Nevanlinna value distribution theory of meromorphic functions
(see [7, 21, 22]). In this paper, we use ρ(f) to denote the order of an entire
function f(z), λ(f) (resp. λ(f)), to denote the exponent of convergence of
zeros (resp. of distinct zeros) of f(z), and µ(f), ρ2(f) to denote the lower order
and hyper-order of f(z)(see [22]), respectively. Moreover, we use the standard
notations S(α, β) := {z : α < arg z < β} and S(α, β; r) := S(α, β) ∩ {z : |z| <
r} frequently in what follows.

In this paper, we are treating second order linear differential equations of
type

f ′′ +A(z)f ′ +B(z)f = 0,(1)

where A(z) and B(z)( ̸≡ 0) are entire functions. It is well known that every
solution of (1) is an entire function. Every nonconstant solution of (1) is of
infinite order, whenever either A(z) and B(z) are entire functions with ρ(A) <
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ρ(B), or A(z) is a polynomial and B(z) is transcendental, or ρ(B) < ρ(A) ≤ 1
2 ,

see e.g., [5, 8, 14].
Recently, a number of papers appear to proving that, under some conditions

upon B(z), every transcendental solution to (1) is of infinite order, whenever
the coefficient A(z) in (1) is a nonconstant solution to equation

w′′ + P (z)w = 0,(2)

where P (z) = amz
m + · · · + a0 is a polynomial of degree m ≥ 1, see e.g.,

[12, 13, 18, 19, 24]. It is well-known that all nonconstant solutions to (2) are of
order (m+ 2)/2. We first recall a result of this type, see e.g., [18]:

Theorem A. Let A(z) be a nonconstant solution of (2), and let B(z) be a
transcendental entire function with ρ(B) < 1/2. Then every transcendental
solution of (1) is of infinite order.

As for another result of this type, we first recall the notion of an accumulation
ray for the zero sequence of a meromorphic function f(z), see e.g., [13, 16,
17]: Let γ = reiθ be a ray from origin. For each ε > 0, the exponent of
convergence of the zero sequence of f(z) at the ray γ = reiθ is denoted by
λθ(f) = limε→0+ λθ,ε(f), where

λθ,ε(f) = lim
r→∞

log+ n(S(θ − ε, θ + ε; r), 1/f)

log r
.

Here, n(S(θ − ε, θ + ε; r), 1/f) counts the number of zeros of f(z) with
multiplicities in the angular sector S(θ − ε, θ + ε; r). The ray γ = reiθ is now
called an accumulation ray of the zero sequence of f(z) if λθ(f) = ρ(f).

We now recall another result of this type, see e.g., [13]:

Theorem B. Suppose that A(z) and B(z) are two linearly independent solu-
tions of (2). If the number of accumulation rays of the zero sequence of A(z) is
less than m+ 2, then every transcendental solution of (1) is of infinite order.

A natural related question is now to find conditions that ensure every tran-
scendental solution to (1) be of infinite order, whenever the number of accu-
mulation rays of the zero sequence of solutions to (2) equals to m+ 2. Indeed,
it follows from Lemma 2.1 below that the number of accumulation rays of the
zero sequence of every nonconstant solution of (2) is ≤ m + 2, and the set of
the accumulation rays of the zero sequence of every nonconstant solution of (2)

is a subset of {θj : 0 ≤ j ≤ m+1}, where θj = 2jπ−arg(am)
m+2 , j = 0, 1, . . . ,m+1.

For the convenience of the reader, we next recall the notion of Borel direction
for meromorphic functions of finite order, see, e.g., [23]: A ray arg z = θ from
the origin is called a Borel direction of order ρ(f), if for any ε > 0 and for any
complex value a ∈ C ∪ {∞} with at most two exceptions, we have

lim
r→∞

log n(S(θ − ε, θ + ε; r), a, f)

log r
= ρ(f).
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Let now an entire function f(z) be of finite order ρ(f). Suppose that f(z)
has p distinct Borel directions and q is the number of its finite deficient values.
Then it is well-known that 2q ≤ p, see [20]. This inequality is called as the
Yang’s inequality. An entire function f is called extremal for Yang’s inequality,
if f satisfies 2q = p.

We are now ready to state our main results as follows:

Theorem 1.1. Suppose A(z) is a nonconstant solution to equation (2) such
that the number of accumulation rays of the zero sequence of A(z) equals to
m + 2 and that an entire function B(z) of finite order satisfies one of the
following conditions:

(1) B(z) is extremal for Yang’s inequality;
(2) B(z) is transcendental with a finite deficient value.
Then every transcendental solution f of (1) satisfies µ(f) = ∞ and ρ2(f) =

max{ρ(A), ρ(B)}.
Moreover, let dj(z) (j = 0, 1, 2) be three polynomials that are not all vanish-

ing and let φ(z) (̸≡ 0) be a meromorphic function of finite order. If ρ(A) ̸=
ρ(B), then the differential polynomial gf = d2f

′′ + d1f
′ + d0f satisfies λ(gf −

φ) = ∞.

Theorem 1.2. Suppose that A(z) and φ(z) satisfy the same conditions as in
Theorem 1.1. Let B(z) be an entire function of finite order that has a finite
Borel exceptional value. Then every transcendental solution f to (1) satisfies
µ(f) = ∞.

Moreover, let dj(z) (j = 0, 1, 2) be three polynomials that are not all vanish-

ing. Then λ(gf − φ) = ∞, provided ρ(A) ̸= ρ(B).

2. Preliminary lemmas

In this section, we collect some lemmas that are used in proving our theo-
rems.

Definition. Suppose that Q(z) = bnz
n + bn−1z

n−1 + · · · + b0, where bn ̸= 0
and δ(Q, θ) = Re(bne

inθ). A ray arg z = θ is called a critical ray of eQ(z), if
δ(Q, θ) = 0. Moreover, we fix the following notations:

E+ := {θ ∈ [0, 2π] : δ(Q, θ) ≥ 0};
E− := {θ ∈ [0, 2π] : δ(Q, θ) ≤ 0}.

Critical rays of eQ(z) divide the whole complex plane into 2n sectors of equal
opening π/n. Suppose that ϕi and ψi (1 ≤ i ≤ n) are critical rays of eQ(z) such
that 0 ≤ ϕ1 < ψ1 < ϕ2 < ψ2 < · · · < ϕn < ψn and ϕn+1 = 2π + ϕ1. These
critical rays form 2n disjoint sectors S(ϕi, ψi) and S(ψi, ϕi+1); 1 ≤ i ≤ n in
which eQ(z) satisfies δ(Q, θ) > 0 and δ(Q, θ) < 0, respectively.

Lemma 2.1 ([1], Lemma 3). Let B(z) = d(z)eQ(z) be an entire function, where
Q(z) is a polynomial of degree n ≥ 1, and d(z) is an analytic function such that
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ρ(d) < ρ(B) = degQ(z). Then, for given ε > 0, there exists a set E ⊂ [0, 2π)
with linear measure zero, such that

(1) if θ ∈ E+ \ E, there exists a R(θ) > 1 such that

|B(reiθ)| ≥ exp((1− ε)δ(Q, θ)rn)

holds for all r > R(θ) and
(2) if θ ∈ E− \ E, there exists a R(θ) > 1 such that

|B(reiθ)| ≤ exp((1− ε)δ(Q, θ)rn)

holds for all r > R(θ).

Remark 2.2. Observe that

E+ =

i=n⋃
i=1

(ϕi, ψi), E− =

i=n⋃
i=1

(ψi, ϕi+1).

For simplicity, we say that f(z) blows up to infinity (exponentially) in
S(α, β) if for any θ, α < θ < β,

lim
r→∞

log log |f(reiθ)|
log r

= ρ(f)

holds and we say that f(z) decays to zero (exponentially) in S(α, β) if for any
θ, α < θ < β,

lim
r→∞

log log |f(reiθ)|−1

log r
= ρ(f)

holds.
The following lemma due to Hille, see [9, Section 7.4], plays an important

role in what follows:

Lemma 2.3 ([9]). Let w(z) be a solution to (2). Set θj =
2πj−arg(am)

m+2 ; 0 ≤ j ≤
m+1. Then w(z) has the following properties in sectors Sj := S(θj , θj+1), j =
0, . . . ,m+ 1, where Sm+1 = S0:

(1) In each sector Sj, w(z) either blows up to infinity or decays to zero
(exponentially).

(2) If, for some j, w(z) decays to zero in Sj, then it must blow up in
Sj−1 and Sj+1. However, it is possible for w(z) to blow up in several
adjacent sectors;

(3) If w(z) decays to zero in Sj, then w(z) has at most finitely many zeros

in any closed sub-sector within Sj−1 ∪ Sj ∪ Sj+1;
(4) If w(z) blows up in Sj−1 and Sj, then for each ε > 0, w(z) has infinitely

many zeros in each sector θj − ε ≤ arg z ≤ θj + ε.

Remark 2.4. By Lemma 2.3, it follows that w(z) blows up exponentially in
every sector Sj , if the number of accumulation rays of the zero sequence of
w(z) is exactly m+ 2, see [15, Lemma 7].
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Lemma 2.5 ([10, Lemma 3]). Let f(z) be a non-constant entire function. Then
there exists a real number R > 0 such that for all r ≥ R we have∣∣∣∣ f(z)f ′(z)

∣∣∣∣ ≤ r

where |z| = r.

Lemma 2.6 ([3, Lemma 5]). Let f(z) be an entire function with ρ(f) = ρ <∞.
Suppose there exists a set E ⊂ [0, 2π) that has linear measure zero, such that
for any ray arg z = θ0 ∈ [0, 2π) \ E, |f(reiθ0)| ≤ Mrk, where M = M(θ0) > 0
is a constant and k(> 0) is a constant independent of θ0. Then f(z) is a
polynomial with deg f ≤ k.

Lemma 2.7 ([4, Lemma 1]). Suppose that f(z) is a meromorphic function of
finite order ρ. Then for a given δ > 0 and 0 < l < 1/2, there exists a constant
κ(ρ, δ) and a set Eδ ⊂ [0,∞) of lower logarithmic density greater than 1 − δ
such that for all r ∈ Eδ and for every interval I of length l, we have

r

∫
I

∣∣∣∣f ′(reiθ)f(reiθ)

∣∣∣∣ dθ < κ(ρ, δ)

(
l log

1

l

)
T (r, f).

The following two lemmas provide an upper and lower bound for hyper-order
of growth for transcendental solutions f of (1).

Lemma 2.8 ([11, Theorem 7.3]). Let A,B be entire functions of finite order.
If f(z) is a solution of (1), then ρ2(f) ≤ max{ρ(A), ρ(B)}.

Lemma 2.9 ([10, Theorem 1]). Let A(z) and B(z) be entire functions such
that ρ(A) < ρ(B) or ρ(B) < ρ(A) < 1

2 . Then every solution f ̸≡ 0 of (1)
satisfies ρ2(f) ≥ max{ρ(A), ρ(B)}.

Lemma 2.10 ([2, Lemma 4]). Let A0, . . . , Ak−1, F ̸≡ 0 be meromorphic func-
tions of finite order. If f is a meromorphic solution of infinite order to

f (k) +Ak−1f
(k−1) + · · ·+A0f = F,

then f satisfies λ(f) = λ(f) = ρ(f) = ∞.

3. Proof of Theorem 1.1

Proof. We start this section by proving first that µ(f) = ρ(f) = ∞.
(a) Suppose that B(z) is an entire function extremal for Yang’s inequality.

Let b1, b2, . . . , bq be the finite deficient values of B(z). Then, B(z) has 2q Borel
directions, say ϕ1, ϕ2, . . . , ϕ2q, dividing the complex plane into 2q sectors, say
Ωj(ϕj , ϕj+1), where 1 ≤ j ≤ 2q and ϕ2q+1 = ϕ1 + 2π. As B(z) is extremal for
Yang’s inequality, so for the alternative sectors, say Ω1,Ω3, . . . ,Ω2q−1, there
exists ϕ ∈ (ϕj , ϕj+1); j = 1, 3, . . . , 2q − 1, such that B(z) satisfies

lim
r→∞

log log |B(reiϕ)|
log r

= ρ(B).
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For the remaining sectors Ωj , and for every deficient value bj , where j =
1, 2, . . . , q, there exists a corresponding sectorial domain Ωj , j ∈ {2, 4, . . . , 2q}
such that

log
1

|B(z)− bj |
> CT (r,B)

holds for all |z| sufficiently large so that z ∈ Ω(ϕj + ε, ϕj+1 − ε), where C is
a constant depending on ϕj , ϕj+1, ε and δ(bj , B). Without loss of generality,
corresponding to a finite deficient value bj0 , we can take a sector Ω2i; 1 ≤ i ≤ q
such that

log
1

|B(z)− bj0 |
> CT (r,B)(3)

holds for z ∈ Ω(ϕ2i + ε, ϕ2i+1 − ε), whenever |z| is sufficiently large.
Using Lemma 2.3, A(z) blows up exponentially in each sector Sj ; j =

0, 1, . . . ,m + 1. Therefore, there exists a sector Sk(θk, θk+1) such that A(z)
blows up exponentially for any θ ∈ (θk, θk+1) ∩ (ϕ2i + ε, ϕ2i+1 − ε) for some
1 ≤ i ≤ q and we have

lim
r→∞

log log |A(z)|
log r

= ρ(A)(4)

for all sufficiently large r.
By [6, Theorem 2], there exists a set F ⊂ [0, 2π) with m(F ) = 0 such that

if θ0 ∈ [0, 2π) \ F , then there is a constant R1 = R1(θ0) > 1, we have∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤M (T (2r, f))
2(k−j)

, (0 ≤ j < k ≤ 2),(5)

for all z satisfying arg z = θ0 and |z| ≥ R1, where M is a constant.
Combining (1), (3), (4), (5) and Lemma 2.5, there exists a sequence z = reiθ

such that for θ ∈ (θk, θk+1) ∩ (ϕ2i + ε, ϕ2i+1 − ε) \ F for some 1 ≤ i ≤ q and
r > max{R,R1, r0}, we have

|A(z)| ≤
∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣+ |(B(z)− bj0) + bj0 |
∣∣∣∣ f(z)f ′(z)

∣∣∣∣ ,
exp{rρ(A)−ε′} ≤M (T (2r, f))

2
+ r (exp{−CT (r,B)}+ |bj0 |)

≤M(T (2r, f))2(1 + o(1)).

(6)

Therefore, we obtain µ(f) = ∞.
We now prove that

ρ2(f) = max{ρ(A), ρ(B)}.

From Lemma 2.8, we obtain ρ2(f) ≤ max{ρ(A), ρ(B)}. Thus, we just need
to prove that ρ2(f) ≥ max{ρ(A), ρ(B)}.

(i) If ρ(A) < ρ(B), then we have ρ2(f) ≥ max{ρ(A), ρ(B)} by Lemma 2.9.
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(ii) If ρ(B) ≤ ρ(A), we get by (6) that

ρ(A)− ε′ ≤ lim
r→∞

log log T (r, f)

log r
,

where ε′ > 0 is arbitrary. This means that ρ2(f) ≥ ρ(A) = max{ρ(A), ρ(B)}
and so ρ2(f) = max{ρ(A), ρ(B)}.

(b) Suppose next that c ∈ C is a finite deficient value of B(z). Then

lim
r→∞

m
(
r, 1

B(z)−c

)
T (r,B)

= α > 0,

which gives

m

(
r,

1

B(z)− c

)
≥ αT (r,B)

for all sufficiently large r. Thus, for r sufficiently large, there exists zr = reiθr

such that

log |B(zr)− c| ≤ −αT (r,B).

From Lemma 2.7, we may choose δ > 0 and 0 < l < 1
2 in such a way that

κ(ρ(B), δ)(l log(1/l)) is sufficiently small. We can also choose ϕ > 0, |θr−ϕ| ≤ l
such that

log |B(reiθ)− c| = log |B(reiθr )− c|+
∫ θ

θr

d

dt
log |B(reit)− c|dt

≤ −αT (r,B) + r

∫ θ

θr

∣∣∣∣ (B − c)′(reit)

(B − c)(reit)

∣∣∣∣ dt
≤ −αT (r,B) + κ(ρ(B), δ)(l log(1/l))T (r,B) ≤ 0

holds for all θ ∈ [θr − ϕ, θr + ϕ] and for all sufficiently large r ∈ Eδ, where
log dens(Eδ) > 1− δ. Thus we have

B(reiθ) ≤ 1 + c(7)

for all sufficiently large r ∈ Eδ and for all θ ∈ [θr − ϕ, θr + ϕ].
Using Lemma 2.3, there exists a sector Sk(θk, θk+1) such that A(z) blows

up exponentially for any θ ∈ [θr − ϕ, θr + ϕ] ∩ (θk, θk+1) and we have

lim
r→∞

log log |A(z)|
log r

= ρ(A).(8)

Combining (1), (5), (7), (8) and Lemma 2.5, there exists a sequence z = reiθ

such that for θ ∈ [θr − ϕ, θr + ϕ] ∩ (θk, θk+1) \ F , we have

|A(reiθ)| ≤
∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣+ |B(z)|
∣∣∣∣ f(z)f ′(z)

∣∣∣∣ ,
exp{rρ(A)−ε′} ≤M (T (2r, f))

2
+ r(1 + c) < M(T (2r, f))2(1 + o(1))

for all r sufficiently large and r ∈ Eδ. This now implies that µ(f) = ∞.
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(c) To proceed, we now define w := gf − φ. Substituting f ′′ = −Af ′ − Bf
into w, we have

w = (d1 − d2A)f
′ + (d0 − d2B)f − φ.(9)

Differentiating both sides of (9), and replacing f ′′ with f ′′ = −Af ′ − Bf , we
get

w′ =
[
d2A

2 − d1A− d′2A− d2A
′ − d2B + d′1 + d0

]
f ′

+ (d2BA− d1B − d′2B − d2B
′ + d′0) f − φ′.

(10)

We then rewrite (9) and (10) into{
α1f

′ + α0f = w + φ,
β1f

′ + β0f = w′ + φ′,
(11)

where 
α1 = d1 − d2A,
α0 = d0 − d2B,
β1 = d2A

2 − (d2A
′ + d′2A+ d1A) + d0 + d′1 − d2B,

β0 = d2AB − d1B − d2B
′ − d′2B + d′0.

(12)

We next define h1 := α1β0 − α0β1. Then

h1 =− d0d2A
2 + (d0d1 + d1d2B + d22B

′ − d′0d2 + d0d
′
2)A

+ (d0d2 − d22B)A′ − d22B
2 − (d21 − 2d0d2 + d1d

′
2 − d′1d2)B

− d1d2B
′ − d20 − d0d

′
1 + d′0d1.

(13)

We now show that h1 does not vanish. This has to be proved in six subcases
below.

(d) (i) Suppose first that d2 ̸= 0, d0 ̸= 0. If now ρ(A) < ρ(B), and h1 = 0,
we may write (13) in the form s2B

2+s1B+s0 = 0, where s2 = −d22, and s1, s0
are polynomials in d0, d2, A,B

′/B. Therefore,

T (r,B) = m(r,B) ≤ O(rρ(A)+ε) +O(log r),

a contradiction, provided ε is small enough. If next ρ(B) < ρ(A), and h1 = 0,
we obtain σ2A

2+σ1A+σ0 = 0, where σ2 = −d0d2, and σ1, σ0 are polynomials in
d0, d2, B,A

′/A, and a contradiction follows as in the preceding case. Therefore,
h1 is not vanishing in this case.

(ii) Suppose that d2 = d0 = 0, d1 ̸= 0. Then h1 = −d21B ̸≡ 0.
(iii) Suppose that d1 = d2 = 0, d0 ̸= 0. Then h1 = −d20 ̸≡ 0.
(iv) Suppose that d0 = d1 = 0, d2 ̸= 0. Then

h1 = d22AB
′ − d22A

′B − d22B
2.

If h1 = 0, we get AB′ −A′B −B2 = 0. It’s not hard to see that ρ(A) = ρ(B),
a contradiction.

(v) Suppose that d0 ̸= 0, d1 ̸= 0 and d2 = 0. Then

h1 = d0d1A− d21B − d0d
′
1 + d′0d1 − d20.
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Clearly, the leading coefficient is d0d1A when ρ(A) > ρ(B), and −d21B when
ρ(B) > ρ(A). Therefore, h1 ̸≡ 0.

(vi) Suppose finally that d1 ̸= 0, d2 ̸= 0 and d0 = 0. Then

h1 = d1d2AB + d22AB
′ − d22A

′B

− (d21B + d1d2B
′ + d22B

2 + d1d
′
2B − d′1d2B).

(14)

This may also be written as

h1 = ς1A− ς0 =

(
d1d2B + d22B

′ − d22B
A′

A

)
A

− (d21B + d1d2B
′ + d22B

2 + d1d
′
2B − d′1d2B).

(15)

If ρ(A) < ρ(B), and h1 = 0, we may easily write (14) in the form τ2B
2 +

τ1B = 0, where τ2 = −d22 and τ1 is a polynomial in d1, d2, A,B
′/B. Therefore,

T (r,B) = m(r,B) ≤ O(rρ(A)+ε) +O(log r),

a contradiction, and we have h1 ̸= 0.
Assume then that ρ(B) < ρ(A), and h1 = 0. By (15), ς1A = ς0. We first see

that ς0 ̸= 0. Indeed, if this is not the case, then

d22B = d′1d2 − d21 − d1d
′
2 − d1d2

B′

B
.

Using [6], Corollary 1 and the fact that d1, d2 are polynomials, there exists a set
E1 ⊂ [0, 2π) with m(E1) = 0 such that for θ0 ∈ [0, 2π) \ E1, and for constants
R0 > 1 and d ̸= 0, we have

|B(reiθ0)| ≤ |z|d

for all z satisfying arg z = θ0 and |z| ≥ R0. By Lemma 2.6, we get that B is a
polynomial, a contradiction.

Obviously, ρ(ς0) ≤ ρ(B) < ρ(A), and so ρ(ς1) = ρ(A). From

ς1 = d1d2B + d22B
′ − d22B

A′

A
,

we immediately conclude that

m(r, ς1) = O(rρ(B)+ε) +O(log r).

Moreover, all possible poles of ς1 are simple. Recalling that ς1A = ς0 and
writing

ς1 = d22B

(
d1
d2

+
B′

B
− ς ′0
ς0

+
ς ′1
ς1

)
= τ + d22B

ς ′1
ς1
,

which may be written in the form

d22Bς
′
1 = ς21 − τς1.(16)

In order to estimateN(r, ς1), the poles z0 of ς1 divide in two groups: If τ has a
pole at z0, the contribution of these poles to N(r, ς1) is ≤ O(rρ(B)+ε)+O(log r),
since ρ(τ) ≤ ρ(B). On the other hand, if τ(z0) is finite, then the double poles
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in (16) must cancel, and we must have d22(z0)B(z0) = −1. This means that the
contribution of these poles to N(r, ς1) is ≤ N(r, 1/(d22B + 1)) ≤ O(rρ(B)+ε) +
O(log r). Therefore, altogether, we have

T (r, ς1) = O(rρ(B)+ε) +O(log r), ρ(ς1) ≤ ρ(B) + 2ε < ρ(A),

provided ε is small enough, a contradiction. Thus, we have that h1 does not
vanish.

(e) We now have that h1 is a non-vanishing entire function of finite order.
Consider now f , by (11), in the form

f =
1

h1
[(w′ + φ′)α1 − (w + φ)β1] =

w′α1 − wβ1
h1

+ ψ,(17)

where

ψ =
φ′α1 − φβ1

h1

is a meromorphic function of finite order. If ρ(w) is finite, then ρ(f) is finite
as well, a contradiction. Therefore, ρ(w) = ρ(gf ) = ∞.

Substituting now (17) into (1), we have

α1

h1
w′′′ + ϕ2w

′′ + ϕ1w
′ + ϕ0w = −(ψ′′ +Aψ′ +Bψ),(18)

where ϕj (j = 0, 1, 2) are meromorphic functions of finite order. Since every
transcendental solution of (1) is of infinite order and ρ(ψ) <∞, we have ψ′′ +
Aψ′ + Bψ ̸≡ 0. Thus, by h1 ̸≡ 0, α1 ̸≡ 0 and Lemma 2.10, we obtain λ(w) =
λ(w) = ρ(w) = ∞. □

Remark 3.1. We remark that (1) cannot have non-constant solutions in the
case of B(z) being extremal for Yang’s inequality. Suppose for a while that
f(z) is such a solution of (1). Then we may write

f(z) = zk(1 + o(1)), k ≥ 1.(19)

By (1), (3), (4) and (19), there exists a sequence z = reiθ such that θ ∈
(θk, θk+1) ∩ (ϕ2i + ε, ϕ2i+1 − ε), for some 1 ≤ i ≤ q and r > r0, we have

|A(z)f ′(z)| ≤ |f ′′(z)|+ |(B(z)− bj0) + bj0 ||f(z)|,

exp{rρ(A)−ε′}rk−1(1 + o(1)) ≤ rk−2(1 + o(1))

+
(
exp{−CT (r,B)}+ |bj0 |)rk(1 + o(1)

)
,

≤ rk(1 + exp{−CT (r,B)}+ |bj0 |)(1 + o(1)),

which is a contradiction. Hence, every nonconstant solution f of (1) is tran-
scendental.
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4. Proof of Theorem 1.2.

Proof. Let f(z) be a transcendental solution of (1).
(a) We first proceed to proving that µ(f) = ∞. Since a is a Borel exceptional

value of B(z), we may apply Weierstrass factorization theorem to obtain

B(z)− a = d(z)eQ(z),

where Q(z) = bnz
n+ · · ·+b0, bn ̸= 0 and ρ(d) < ρ(B) = degQ(z). This implies

that

|B(z)− a| = |d(z)eQ(z)| = |d(z)|eRe{Q(z)}.

Applying Lemma 2.1, for θ ∈ E− \ E, there exists a R0(θ) > 1 such that

|B(reiθ)− a| ≤ exp((1− ε)δ(Q, θ)rn)(20)

holds for all r > R0(θ). For the convenience to the reader, we say that (20)
holds for θ ∈

⋃n
i=1(ψi, ϕi+1) \ E and r > R0(θ).

By Lemma 2.3, there exists a sector Sk(θk, θk+1) such that A(z) blows up
exponentially for any θ ∈ (ψi, ϕi+1)∩ (θk, θk+1) \E, for some 1 ≤ i ≤ n and we
then have

lim
r→∞

log log |A(z)|
log r

= ρ(A)(21)

in these sectors for all r sufficiently large.
By [6, Theorem 2], there exists a set F ⊂ [0, 2π) with m(F ) = 0 such that

if θ0 ∈ [0, 2π) \ F , then there is a constant R1 = R1(θ0) > 1, we have∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤M (T (2r, f))
2(k−j)

, (0 ≤ j < k ≤ 2),(22)

for all z satisfying arg z = θ0 and |z| ≥ R1, where M is a constant.
Together with (1), (20)-(22) and Lemma 2.5, there exists a sequence z = reiθ

such that for θ ∈ (ψi, ϕi+1) ∩ (θk, θk+1) \ (E ∪ F ) for some 1 ≤ i ≤ n and for
all sufficient large r > max{R,R0, R1}, we have

exp{rρ(A)−ε′} ≤
∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣+ |(B(z)− a) + a|
∣∣∣∣ f(z)f ′(z)

∣∣∣∣
≤M(T (2r, f))2 + r (exp((1− ε)δ(Q, θ)rn) + |a|)
≤M(T (2r, f))2(1 + o(1)).

Therefore, we obtain µ(f) = ∞.
(b) Similarly as in proving Theorem 1.1, we proceed to proving that an

entire function h, to be defined below, is not vanishing. This will be done in
six subcases.

(i) Suppose first that d2 ̸= 0, d0 ̸= 0. Substituting f ′′ = −Af ′ − (deQ + a)f
into gf , we have

gf = (d1 − d2A)f
′ + (d0 − d2de

Q − d2a)f.(23)



12 Z.-B. HUANG, I. LAINE, AND J.-L. LIN

Differentiating both sides of (23), and eliminating f ′′ with f ′′ = −Af ′−(deQ+
a)f , we obtain

g′f =
[
−d2deQ + (d′1 − d2A

′ − d′2A− d1A+ d2A
2 + d0 − d2a)

]
f ′

+
[
(−d′2d− d2d

′ − d2dQ
′ − d1d+ d2dA)e

Q

+(d′0 − d′2a− d1a+ d2aA)] f.

(24)

We then rewrite (23) and (24) into{
α1f

′ + α0f = gf ,
β1f

′ + β0f = g′f .
(25)

Here, 
α1 = d1 − d2A,
α0 = d0 − d2de

Q − d2a,
β1 = −d2deQ + d′1 − d2A

′ − d′2A− d1A+ d2A
2 + d0 − d2a,

β0 = (−d′2d− d2d
′ − d2dQ

′ − d1d+ d2dA)e
Q + (d′0 − d′2a

−d1a+ d2aA).

(26)

Define now h := α1β0 − α0β1.
If ρ(B) < ρ(A), then

h =− d22d
2e2Q + (−d1d′2d− d1d2d

′ − d1d2dQ
′ − d21d+ d1d2dA

+ d22d
′A+ d22dQ

′A+ d′1d2d− d22dA
′ + 2d0d2d− 2d22da)e

Q

+ (d′0d1 − d1d
′
2a− d21a− d′0d2A+ d1d2aA− d0d

′
1 + d0d2A

′ + d0d
′
2A

+ d0d1A− d0d2A
2 − d20 + 2d0d2a+ d′1d2a− d22aA

′ − d22a
2).

(27)

If h = 0, then (27) may be written as s2A2+s1A+s0 = 0. Here, the proximity
functions of the coefficients are ≤ O(rρ(B)+ε) + O(log r), and so we easily get
ρ(A) ≤ ρ(B), a contradiction. So, we complete the conclusion that h ̸= 0.

If then ρ(A) < ρ(B), it follows that h is a second order polynomial in eQ

with the leading coefficient −d22d2 ̸= 0. Thus, h ̸= 0.
(ii) Suppose that d2 = d0 = 0, d1 ̸= 0. Then h = −d21B ̸= 0.
(iii) Suppose that d2 = d1 = 0, d0 ̸= 0. Then h = −d20 ̸= 0.
(iv) Suppose that d0 = d1 = 0, d2 ̸= 0, then

h = −d22d2e2Q + (d22d
′A+ d22dQ

′A− d22dA
′ − 2d22da)e

Q − d22aA
′ − d22a

2.

It’s not hard to see that ρ(A) = degQ = ρ(B) if h = 0, a contradiction.
(v) Suppose that d0 = 0, d1 ̸= 0, d2 ̸= 0. Then we may proceed similarly as

(vi) of Part (d) in the proof of Theorem 1.1. Therefore, h ̸= 0.
(vi) Suppose that d2 = 0, d1 ̸= 0 and d0 ̸= 0, then

h = −d21deQ + d′0d1 + d0d1A− d20 − d0d
′
1 − d21a.

If now h = 0 and ρ(A) < ρ(B), the leading coefficient −dd21 does not vanish,
and we get a contradiction. Finally, if ρ(B) < ρ(A), then d0d1 ̸= 0 and a
contradiction again follows. Hence, h ̸= 0.
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(c) To complete the proof of Theorem 1.2, we may proceed exactly as in
Part (e) of the proof of Theorem 1.1. Thus λ(gf − φ) = ∞. □
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