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Abstract By using asymptotic method, we verify the existence on the slowly growing

solutions to second order difference equations discussed by Ishizaki-Yanagihara’s Wiman-

Valiron method and Ishizaki-Wen’s binomial series method. The classical problem on finding

conditions on the polynomial coefficients Pj(z) (j = 0, 1, 2) and F (z) to guarantee that all

nontrivial solutions of complex second order difference equation P2(z)f(z + 2) + P1(z)f(z +

1) + P0(z)f(z) = F (z) has slowly growing solutions with order 1/2 is detected.

Keywords complex difference equation; slowly growing solution; asymptotic method;

Wiman-Valiron method; binomial Series method

MSC2020 30D35; 39B32

1 Introduction and main results

We assume that the reader is familiar with the fundamental results and the standard

notations of the Nevanlinna value distribution of meromorphic functions, see, e.g. [7, 8, 14, 20].

For a meromorphic function f(z) in the complex plane C, the order ρ(f) and the lower order

µ(f) are defined by, respectively,

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
and µ(f) = lim inf

r→∞

log+ T (r, f)

log r
.

If f is entire, then the Nevanlinna characteristic T (r, f) can be replaced with logM(r, f), where

M(r, f) = max{|f(z)| : |z| ≤ r}.
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It is well known that if the coefficients Pj(z) (j = 0, 1, · · · , n) are polynomials, then the

order of “most” solutions of equation

Pn(z)f(z + n) + · · ·+ P1(z)f(z + 1) + P0(z)f(z) = 0 (1.1)

are not less than 1, see e.g. [2–4, 6]. On the other hand, there are equations of the form (1.1)

that possess a nontrivial solution with order less than 1. For example, using Wiman-Valiron

method, Ishizaki and Yanagihara [11] paid attention to difference equation

Qn(z)∆nf(z) + · · ·+Q1(z)∆f(z) +Q0(z)f(z) = 0, (1.2)

where Qn(z), · · · , Q0(z) are polynomials, and obtained the following theorem.

Theorem 1.1 ([11, Theorem 1.1]) Let f(z) be a transcendental entire solution of (1.2)

and of order χ < 1/2. Then we have

logM(r, f) = Lrχ(1 + o(1)),

where a rational number χ is a slope of Newton polygon for the equation (1.2), and L > 0 is a

constant. In particular, we have χ > 0.

Putting a formal solution of the form

f(z) =
∞∑
n=0

αnzλ(n), zλ(n) =
Γ(z + 1)

Γ(z + 1− λ+ n)
, α0 6= 0,

Ishizaki et.al. proved that the difference equation

b3z(z − 1)(z − 2)∆3f(z − 3) + b2z(z − 1)∆2f(z − 2) + b1z∆f(z − 1) + (c0z + b0)f(z) = 0

has an entire solution with order 1/3.

Define

∆f(z) = f(z + 1)− f(z) and ∆nf(z) = ∆(∆n−1f(z)) (n = 2, 3, · · · ),

and then

∆nf(z) =

n∑
j=0

(
n
j

)
(−1)n−jf(z + j) and f(z + n) =

n∑
j=0

(
n
j

)
∆jf(z).

Therefore, equation (1.1) and equation (1.2) can be expressed in terms of each other.

Ishizaki and Wen [12] considered the convergence of binomial series
∞∑
n=0

anz
n, where z0 = 1

and zn = z(z − 1) · · · (z − n + 1) n = 1, 2, · · · , and constructed a difference Riccati equation

possessing a transcendental entire solution of order 1/2, which is represented by a binomial

series.

Naturally, two questions arise:

Question 1.2 Under what conditions on polynomial coefficients, does difference equation

(1.1) admit a transcendental meromorphic solution f(z) with order ρ(f) < 1?

Question 1.3 Which values may be taken by the order of transcendental meromorphic

solutions f(z) of difference equation (1.1) with polynomial coefficients?

The above two questions are very important. But so far, there are just two papers involving

the Question 1.3. By Wiman-Valiron theory[11], 1/3 and 1/5 can be the numbers of order for

entire solutions to difference equation (1.2). By binomial series[12], 1/2 can be the number
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of order for entire solution to a certain type of difference Riccati equation. However, Chen

considered a first order linear difference equation and obtained the following theorem.

Theorem 1.4 ([5, Theorem 1.3]) Let p2(z) 6≡ 0, p1(z), F (z) be polynomials, c2, c1(6=
c2) be constants. Suppose that f(z) is a finite order transcendental meromorphic solution of

difference equation

p2(z)f(z + c2) + p1(z)f(z + c1) = F (z),

then ρ(f) ≥ 1.

Remark 1.5 Theorem 1.4 shows that a first order linear difference equation with polyno-

mial coefficients does not admit any transcendental meromorphic solution with order ρ(f) < 1,

which gives a negative answer to Question 1.2.

The study of linear homogeneous difference equations in the complex plane was active in

the early 19’s, e.g., Jordan[13], Landau[15], Milne-Thomson[16], Nörlund[17] and Whittaker[19].

They have considered different methods to construct meromorphic solutions deeply. The result

due to Praagman [18] in 1986 contributed to the existence of meromorphic solutions, which

is important in this area. Asymptotic method is definitely powerful tools for non-existence

of solutions, however somewhat weak for existence of solutions. Thus, it is an important and

interesting problem to detect the slowly growing solutions of second order linear difference

equations by asymptotic method, and try to answer Question 1.2 and Question 1.3. We obtain

the following theorems.

Theorem 1.6 Suppose that f(z) is a transcendental meromorphic solution of difference

equation

P2(z)f(z + 2) + P1(z)f(z + 1) + P0(z)f(z) = 0, (1.3)

where Pj(z) (j = 0, 1, 2) are polynomials. Then every transcendental solution f(z) satisfies

ρ(f) ≥ 1, except for the slowly growing order ρ(f) = 1/2 when

(i)

Pj(z) = ajz
n + βj(z), (j = 0, 1, 2),

where n ∈ N+, aj(6= 0) are constants with a2 = a0, and βj(z) (j = 0, 1, 2) are polynomials of

degree deg(βj) ≤ n− 1 satisfying

deg(P0 + P1 + P2) = deg(β0 + β1 + β2) = n− 1,

and

(ii) f(z) has finitely many poles at most.

Theorem 1.7 Suppose that f(z) is a transcendental meromorphic solution of difference

equation

P2(z)f(z + 2) + P1(z)f(z + 1) + P0(z)f(z) = F (z), (1.4)

where Pj(z) (j = 0, 1, 2), F (z) are polynomials. Then the same statements of Theorem 1.6 still

hold.

Example 1.8 Consider the equation

(4z + 6)f(z + 2)− (8z + 9)f(z + 1) + (4z + 4)f(z) = 0, (1.5)
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where the coefficients P2(z) = 4z + 6, P1(z) = −(8z + 9), P0(z) = 4z + 4 satisfy the exception

(i) of Theorem 1.6 with

degP0 = degP1 = degP2 = 1, a0 = a2 = 4,

deg(P0 + P1 + P2) = n− 1 = 0 < 1.

Therefore, we see that equation (1.5) admits an slowly growing entire solution f(z) with ρ(f) =

1/2. In fact, equation (1.5) can be rewritten as

(4z + 6)∆2f(z) + 3∆f(z) + f(z) = 0. (1.6)

Ishizaki and Wen [12, Example 4.3] have shown that equation (1.6) has an entire solution in

the form of binomial series which has slowly growing order 1/2.

Example 1.9 The equation

f(z + 2) + z2f(z + 1)− (z2 + 1)f(z) = z2 + 2 (1.7)

has solutions f1(z) = z and f2(z) = tan(πz) + z, where P2(z) = 1, P1(z) = z2 and P0(z) =

−(z2 + 1) don’t satisfy the exceptions of Theorem 1.7. Thus, we see that every transcenden-

tal meromorphic solution f(z) of equation (1.7) satisfies ρ(f) ≥ 1 since f1 and f2 are linear

independent with ρ(f2) = 1.

2 Preliminary lemmas

Following Hayman[9, p.77], we define an ε−set to be a countable union of open discs not

containing the origin and subtending angles at the origin whose sum is finite. If E is an ε−set,

then the set of r ≥ 1 for which the circle S(0, r) meets E has finite logarithmic measure, and for

almost all real θ the intersection of E with the ray arg z = θ is bounded. Now, we state some

lemmas which are important for the proofs of theorems. Lemmas 2.1−2.3 are the asymptotic

formulas among derivatives, shifts and difference operators of meromorphic functions with order

less than one, which are given by Bergweiler and Langley [1].

Lemma 2.1 ([1, Lemma 3.3]) Let g(z) be a function transcendental and meromorphic in

the plane of order less than one. Let h > 0. Then there exists an ε-set E such that

g
′
(z + c)

g(z + c)
→ 0 and

g(z + c)

g(z)
→ 1, as z →∞ in C \ E,

uniformly in c for |c| ≤ h. Further, E may be chosen so that for large z not in E the function

g(z) has no zeros and poles in |ζ − z| ≤ h.

Lemma 2.2 ([1, Lemma 3.5]) Let f(z) be a transcendental meromorphic function of order

less than one. Let h > 0. Then there exists an ε-set E
′

such that

f(z + c)− f(z) = cf
′
(z)(1 + o(1)) as z →∞ in C \ E

′

uniformly in c for |c| ≤ h.

Lemma 2.3 ([1, Lemma 4.2]) Let n ∈ N+. Let f(z) be a transcendental meromorphic

function of order less than 1. Then there exists an ε-set En such that

∆nf(z) ∼ f (n)(z) (n = 1, · · · ) as z →∞ in C \ En.
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Lemma 2.4 Suppose that f(z) is a transcendental meromorphic solution of equation

(1.3) with only finitely many poles. Set f(z) = f1(z)
P (z) , where f1(z) is an entire function, P (z) is

a polynomial formed by the poles of f(z). Then, equation (1.3) can be rewritten as

D2(z)f1(z + 2) +D1(z)f1(z + 1) +D0(z)f1(z) = 0, (2.1)

where Dj(z) (j = 0, 1, 2) are polynomials. Suppose that, for equation (1.3), Pj(z) (j = 0, 1, 2)

satisfy the exception (i) of Theorem 1.6. Then Dj(z) (j = 0, 1, 2) also satisfy the exception (i)

of Theorem 1.6.

Proof Substituting f(z) = f1(z)
P (z) into equation (1.3), we obtain equation (2.1), where

D2(z) = P2(z)P (z + 1)P (z), (2.2)

D1(z) = P1(z)P (z + 2)P (z), (2.3)

D0(z) = P0(z)P (z + 2)P (z + 1). (2.4)

Since Pj(z) (j = 0, 1, 2) satisfy the exception (i) of Theorem 1.6, we see that

Pj(z) = ajz
n + βj(z), a2 = a0, (aj 6= 0, j = 0, 1, 2 are constants),

and βj(z) (j = 0, 1, 2) are polynomials satisfying

deg βj ≤ n− 1,

and

deg(P0 + P1 + P2) = deg(β0 + β1 + β2) = n− 1. (2.5)

Set

βj(z) = bj(n−1)z
n−1 + · · · , (2.6)

P (z) = dmz
m + dm−1z

m−1 + · · · , dm 6= 0, (2.7)

where dk (k = m,m − 1, · · · , 0), bj(n−1), · · · , bj0 (j = 0, 1, 2) are constants. By (2.5), we see

that

b2(n−1) + b1(n−1) + b0(n−1) 6= 0. (2.8)

Thus, by (2.2), (2.6) and (2.7), we obtain

D2(z) = (a2z
n + b2(n−1)z

n−1 + · · · )(dmzm + (mdm + dm−1)zm−1 + · · · )

· (dmzm + dm−1z
m−1 + · · · )

= a2d
2
mz

n+2m + (2a2dmdm−1 + a2md
2
m + b2(n−1)d

2
m)zn+2m−1 + · · · .

(2.9)

By (2.3), (2.6) and (2.7), we obtain

D1(z) = (a1z
n + b1(n−1)z

n−1 + · · · )(dmzm + (2mdm + dm−1)zm−1 + · · · )

· (dmzm + dm−1z
m−1 + · · · )

= a1d
2
mz

n+2m + (2a1dmdm−1 + 2a1md
2
m + b1(n−1)d

2
m)zn+2m−1 + · · · .

(2.10)
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By (2.4), (2.6) and (2.7), we obtain

D0(z) = (a0z
n + b0(n−1)z

n−1 + · · · )(dmzm + (2mdm + dm−1)zm−1 + · · · )

· (dmzm + (mdm + dm−1)zm−1 + · · · )

= a0d
2
mz

n+2m + (2a0dmdm−1 + 3a0md
2
m + b0(n−1)d

2
m)zn+2m−1 + · · · .

(2.11)

By (2.9)−(2.11), we obtain

D2(z) +D1(z) +D0(z) = (a0 + a1 + a2)d2mz
n+2m

+{2dmdm−1(a0 + a1 + a2) +md2m(3a0 + 2a1 + a2)

+d2m(b0(n−1) + b1(n−1) + b2(n−1))}zn+2m−1 + · · · .

(2.12)

In what follows, we show that Dj(z) (j = 0, 1, 2) satisfy the exception (i) of Theorem 1.6.

Since Pj(z) (j = 0, 1, 2) satisfy the exception (i) of Theorem 1.6, we see that

a0 + a1 + a2 = 0 and a2 = a0, (2.13)

so, a1 = −2a2, and

(a0 + a1 + a2)d2m = 0. (2.14)

Hence

a2d
2
m = a0d

2
m, (2.15)

and

deg(D0 +D1 +D2) < n+ 2m.

By (2.8) and (2.13), we see from (2.12) that

2dmdm−1(a0 + a1 + a2) +md2m(3a0 + 2a1 + a2) = 0,

and

d2m(b0(n−1) + b1(n−1) + b2(n−1)) 6= 0.

Then

deg(D0 +D1 +D2) = n+ 2m− 1. (2.16)

Hence, for equation (2.1), by (2.9)−(2.12) and (2.14)−(2.16), we obtain that Dj(z) (j =

0, 1, 2) satisfy the exception (i) of Theorem 1.6. �

Remark 2.5 From the proof of Lemma 2.4, we can prove that if for equation (1.3),

Pj(z) (j = 0, 1, 2) do not satisfy the exception of Theorem 1.6, then for equation (2.1),

Dj(z) (j = 0, 1, 2) also do not satisfy the exception of Theorem 1.6. This means that in

the proofs of Theorem 1.6 and Theorem 1.7, without loss of generality, we can assume a tran-

scendental meromorphic solution of finitely many poles to be an entire solution.

Lemma 2.6 ([3, 4]) Let F (z) and Pj(z) (j = 0, 1, · · · , n) be polynomials such that

FPnP0 6≡ 0. Suppose that f(z) is a meromorphic solution with infinitely many poles of equation

Pn(z)f(z + n) + Pn−1(z)f(z + n− 1) + · · ·+ P0(z)f(z) = F (z),

(or equation (1.1)), then ρ(f) ≥ 1.
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Lemma 2.7 ([6, Theorem 9.4]) Let Pj(z) (j = 0, 1, · · · , n) be polynomials such that there

exists an integer l, 0 ≤ l ≤ n satisfying

degPl > max
0≤j≤n,j 6=l

{degPj}.

Suppose f(z) is a meromorphic solution of (1.1), then ρ(f) ≥ 1.

Lemma 2.8 ([3, 4]) Let Pj(z) (j = 0, 1, · · · , n) be polynomials such that PnP0 6≡ 0 and

deg(Pn + · · ·+ P0) = max{degPj , j = 0, · · · , n} ≥ 1.

Then every finite order transcendental meromorphic solution f(z)(6≡ 0) of equation (1.1) satis-

fies ρ(f) ≥ 1, and f(z) assumes every non-zero value a ∈ C infinitely often and λ(f−a) = ρ(f).

3 Asymptotic method

In this section, we mainly introduce asymptotic method, see, e.g. [7, P.183-184], [10,

P.227-229]). We discuss the propositions of asymptotic method and apply them to difference

equations.

Suppose that f(z) =
∞∑
n=0

anz
n. The maximum term µ(r, f) of f(z) is defined by

µ(r, f) := max{|an|rn : n ≥ 0},

and the central index ν(r, f) of f(z) is defined by

ν(r, f) = max{n : |an|rn = µ(r, f)}.

Theorem 3.1 ([10, 14]) Suppose that f(z) is a transcendental entire function, for any

given 0 < δ < 1/8, there exists a set H of finite logarithmic measure such that

f (n)(z)

f(z)
=
(ν(r, f)

z

)n
(1 + o(1)), |z| = r 6∈ H, (3.1)

whenever |f(z)| ≥M(r, f)ν(r, f)−
1
8+δ.

Suppose that Pj(z) (j = 0, 1, · · · , n), F (z) are polynomials, and consider linear differential

equation

Pn(z)f (n)(z) + Pn−1(z)f (n−1)(z) + · · ·+ P0(z)f(z) = F (z), (3.2)

and corresponding homogeneous linear differential equation

Pn(z)f (n)(z) + Pn−1(z)f (n−1)(z) + · · ·+ P0(z)f(z) = 0. (3.3)

If a solution f(z) of (3.2) (or (3.3)) is a transcendental entire function, then from Theorem

3.1, for a set H ⊂ (1,+∞) having finite logarithmic measure, we can choose z satisfying

|z| = r /∈ [0, 1] ∪H and |f(z)| = M(r, f) such that

f (j)(z)

f(z)
=
(ν(r, f)

z

)j
(1 + o(1)), (j = 1, 2, · · · , n). (3.4)

Substituting (3.4) into (3.2) and (3.3), respectively, we obtain that, for all r 6∈ [0, 1] ∪H,

Pn(z)
(
ν(r,f)
z

)n
(1 + o(1)) + Pn−1(z)

(
ν(r,f)
z

)n−1
(1 + o(1)) + · · ·+ P0(z) = o(1), (3.5)
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and

Pn(z)
(
ν(r,f)
z

)n
(1 + o(1)) + Pn−1(z)

(
ν(r,f)
z

)n−1
(1 + o(1)) + · · ·+ P0(z) = 0. (3.6)

Suppose that Aj 6= 0 and Pj(z) = Ajz
mj (1 + o(1)) (j = 0, 1, · · · , n) as r → ∞. By (3.5) and

(3.6), we obtain that, for all r 6∈ [0, 1] ∪H,

Anν(r, f)nzmn−n(1 + o(1)) +An−1ν(r, f)n−1zmn−1−(n−1)(1 + o(1))

+ · · ·+A0z
m0(1 + o(1)) = o(1),

(3.7)

and

Anν(r, f)nzmn−n(1 + o(1)) +An−1ν(r, f)n−1zmn−1−(n−1)(1 + o(1))

+ · · ·+A0z
m0(1 + o(1)) = 0.

(3.8)

Since solutions of algebraic equations (3.7) and (3.8) are continuous functions of coeffi-

cients, solutions ν(r, f) of equations (3.7) and (3.8) must asymptotically equal to the solution

of equation

Anν(r, f)nzmn−n +An−1ν(r, f)n−1zmn−1−(n−1) + · · ·+A0z
m0 = 0. (3.9)

Since the solution ν(r, f) of (3.9) is algebraic function of z, we set the principal part of

ν(r, f) to be a(ρ)zρ (a, ρ are nonzero real numbers) in the neighborhood of z =∞, i.e.,

ν(r, f) = a(ρ)zρ(1 + o(1)) in the neighborhood of z =∞. (3.10)

By (3.9) and (3.10), it is easy to see that the degrees of all terms of the left side of (3.9)

are, respectively,

nρ+mn − n, (n− 1)ρ+mn−1 − (n− 1), · · · , m0. (3.11)

Since ν(r, f) is the solution of (3.9), we see from (3.11) that there are two terms at least such

that they are the largest numbers and equal, and the sum of coefficients of their corresponding

terms in (3.9) is zero. Hence, ρ satisfies

iρ+mi − i = jρ+mj − j for i < j (i, j = 0, 1, · · · , n). (3.12)

Thus, we see that ρ is a rational number, at most n such rational numbers which are not less

than 1/n. Thus, we further have

Proposition 3.2 Suppose that f(z) is a transcendental entire solution of difference e-

quation

Rk(z)∆kf(z) +Rk−1(z)∆k−1f(z) + · · ·+R0(z)f(z) = 0, (3.13)

where

Rj(z) = bjnj
znj + bj(nj−1)z

nj−1 + · · ·+ bj0, (j = 0, 1, · · · , k) (3.14)

are polynomials, and bjnj
(6= 0), bj(nj−1), · · · , bj0 are constants.

If the order ρ(f) = σ < 1, then σ can be obtained from

i(σ − 1) + ni = j(σ − 1) + nj , (i < j, i, j = 0, 1, · · · , k), (3.15)

where i(σ − 1) + ni and j(σ − 1) + nj are two largest numbers in numbers

sσ + ns − s, (s = 0, 1, · · · , k). (3.16)
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Proof Since the order ρ(f) = σ < 1, we see from Lemma 2.3 that there exist ε-sets Ej

(j = 1, · · · , k) such that

∆jf(z) = f (j)(z)(1 + o(1)) as z →∞ in C\Ej . (3.17)

Set H1 =
{
|z| = r : z ∈

⋃k
j=1Ej

}
. Then H1 is a set of finite logarithmic measure.

Since f(z) is a transcendental entire function, then by Theorem 3.1, there exists a set H2

of finite logarithmic measure such that

f (j)(z)

f(z)
=
(ν(r, f)

z

)j
(1 + o(1)), (j = 1, · · · , k), (3.18)

where |f(z)| = M(r, f), |z| = r 6∈ H1 ∪H2, ν(r, f) is the central index of f(z).

Substituting (3.17) and (3.18) into (3.13), we obtain

Rk(z)
(
ν(r,f)
z

)k
(1 + o(1)) +Rk−1(z)

(
ν(r,f)
z

)k−1
(1 + o(1))

+ · · ·+R0(z) = 0, |z| = r 6∈ H1 ∪H2.
(3.19)

By (3.14) and (3.19), we obtain

bknk
znk

(
ν(r,f)
z

)k
(1 + o(1)) + b(k−1)nk−1

znk−1

(
ν(r,f)
z

)k−1
(1 + o(1))

+ · · ·+ b0n0
zn0(1 + o(1)) = 0, |z| = r 6∈ H1 ∪H2,

(3.20)

By asymptotic method, we see that solutions ν(r, f) of equation (3.20) must be asymptotically

equal to solutions of equation

bknk
znk

(ν(r, f)

z

)k
+ b(k−1)nk−1

znk−1

(ν(r, f)

z

)k−1
+ · · ·+ b0n0z

n0 = 0. (3.21)

Again by asymptotic method and ρ(f) = σ < 1, we may assume that

ν(r, f) = a(σ)zσ(1 + o(1)) in the neighborhood of z =∞, (3.22)

where a is a nonzero real number, σ is a rational number satisfying σ ≥ 1
k .

From (3.21) and (3.22), it is easy to see that the degrees of all terms of the left of (3.21)

are, respectively,

kσ + nk − k, (k − 1)σ + nk−1 − (k − 1), · · · , n0. (3.23)

Thus, σ can be obtained from

i(σ − 1) + ni = j(σ − 1) + nj , (i < j, i, j ∈ {0, 1, · · · , k}), (3.24)

where i(σ − 1) + ni and j(σ − 1) + nj are equal and the largest numbers in numbers

sσ + ns − s, (s = 0, 1, · · · , k).

�

Example 3.3 Suppose that f(z) is a transcendental entire solution of difference equation

(6z2 + 19z + 15)∆3f(z) + (z + 3)∆2f(z)−∆f(z)− f(z) = 0. (3.25)

If ρ(f) = σ < 1, we obtain that σ can be represented in

3(σ − 1) + 2, 2(σ − 1) + 1, 1(σ − 1) + 0, 0
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by similar calculation to Proposition 3.2. Obviously,

3(σ − 1) + 2 > 2(σ − 1) + 1, 3(σ − 1) + 2 > 1(σ − 1) + 0.

Thus, we get σ = 1
3 by 3(σ − 1) + 2 = 0.

Remark 3.4 The method of Proposition 3.2 can only roughly give the orders for entire

solutions with ρ(f) < 1 for linear difference equations with polynomial coefficients. It can not

determine under what conditions, linear difference equation with polynomial coefficients admits

an entire solution with ρ(f) < 1.

However, by adding some assumptions to the coefficients Rj(z) (j = 0, 1, · · · , k), we can

determine a linear difference equation with polynomial coefficients does not admit an entire

solution with ρ(f) < 1.

Proposition 3.5 Consider difference equations (3.13) and

Rk(z)∆kf(z) +Rk−1(z)∆k−1f(z) + · · ·+R0(z)f(z) = F (z), (3.26)

where F (z) is a polynomial, Rj(z) (j = 0, · · · , k) are defined as in (3.14). If degRj(z) = nj

satisfy

max{nj , j = s+ 1, · · · , k} ≤ ns, (3.27)

and

ns ≥ nd + (s− d), d = s− 1, · · · , 0, (3.28)

then difference equations (3.13) and (3.26) do not admit any transcendental entire solution with

order ρ(f) < 1.

Proof We see from (3.13) that the corresponding numbers in (3.16) of Proposition 3.2

are

j(σ − 1) + nj (j = k, · · · , s+ 1),

s(σ − 1) + ns, d(σ − 1) + nd (d = s− 1, · · · , 0).
(3.29)

By j > s and (3.27), we have

j(σ − 1) + nj < s(σ − 1) + ns, j = k, · · · , s+ 1. (3.30)

By d < s and (3.28), we have

s(σ − 1) + ns − [d(σ − 1) + nd] = (σ − 1)(s− d) + ns − nd ≥ (s− d)σ > 0.

These yield

s(σ − 1) + ns > d(σ − 1) + nd. (3.31)

Thus, by (3.30) and (3.31), we see from (3.29) that there exists only one term s(σ−1) +ns

which is the largest number, a contradiction.

Hence, difference equation (3.13) do not admit any entire solution with order ρ(f) < 1.

The same assertion can be reached for equation (3.26). �

Corollary 3.6 Consider difference equations (3.13) and (3.26), where F (z) is a polyno-

mial, Rj(z) (j = 0, · · · , k) are defined as in (3.14). If degRj(z) = nj satisfy

max{nj , j = 1, · · · , k} ≤ n0, (3.32)
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then difference equations (3.13) and (3.26) do not admit any transcendental entire solution with

order ρ(f) < 1.

Example 3.7 Consider again (3.25), we see that

degR3 = n3 = 2 and degR0 = n0 = 0,

do not satisfy (3.28) in Proposition 3.5. Indeed, Example 3.3 shows that equation (3.25) admits

a transcendental entire solution of order 1/3.

Example 3.8 Consider equation

(4z + 6)∆2f(z) + 3∆f(z) + f(z) = 0. (3.33)

We see that

degR2 = n2 = 1, degR1 = n1 = 0, and degR0 = n0 = 0,

do not satisfy (3.28) in Proposition 3.5. We note that equation (3.33) can turn into (1.5).

Indeed, Example 1.8 shows that equation (3.33) admits a transcendental entire solution of

order 1/2.

Example 3.9 Consider equation

∆2f(z) + (z2 + 2)∆f(z) + 0 = z2 + 2. (3.34)

We see that

degR2 = n2 = 0, degR1 = n1 = 2, and degR0 = n0 = 0,

satisfy (3.27) and (3.28) in Proposition 3.5. Hence, all transcendental entire solutions of (3.34)

are of order not less than one. Example 1.9 also shows that equation (1.7), which is the form

of (3.34), does not admit a transcendental entire solution of order ρ(f) < 1.

Proposition 3.10 Consider difference equation

B3(z)∆3f(z) +B2(z)∆2f(z) +B1(z)∆f(z) +B0(z)f(z) = 0 (3.35)

and

B3(z)∆3f(z) +B2(z)∆2f(z) +B1(z)∆f(z) +B0(z)f(z) = F (z), (3.36)

where Bj(z) (j = 0, 1, 2, 3) and F (z) are polynomials, degBj(z) = nj .

If f(z) is an entire solution of (3.35) or (3.36) with order ρ(f) = σ < 1, then σ ∈ { 13 ,
1
2 ,

2
3}.

Further,

(1) if n3 = n1 + 1 or n2 = n0 + 1, then σ = 1
2 ;

(2) if n3 = n0 + 1, then σ = 1
3 ;

(3) if n3 = n0 + 2, then σ = 2
3 .

Proof When n = 3 and ρ(f) = σ < 1, the numbers in (3.23) are

3σ + n3 − 3, 2σ + n2 − 2, σ + n1 − 1, n0,

where nj (j = 0, 1, 2, 3) are nonnegative integers.

If jσ+ nj − j = (j − 1)σ+ nj−1− (j − 1) for j ∈ {1, 2, 3}, then we have σ = 1 + nj−1− nj ,
a contradiction.
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If 3σ + n3 − 3 = jσ + nj − j for j ∈ {0, 1}, then σ = (n0 − n3 + 3)/3, σ = (n1 − n3 + 2)/2

respectively.

Noting 1
3 ≤ σ < 1. Thus, we have σ = 2

3 if n0 − n3 = −1 and σ = 1
3 if n0 − n3 = −2. We

also have σ = 1
2 if n1 − n3 = −1.

If 2σ+n2−2 = n0, then we have σ = (n0−n2 + 2)/2. This case comes from n0−n2 = −1,

and so σ = 1
2 . �

4 Proofs of Theorem 1.6 and Theorem 1.7

In this section, we will give a complete proof of Theorem 1.6. Theorem 1.7 can be reached

similarly.

Proof Firstly, we prove the exception of Theorem 1.6 holds.

Assume that

Pj(z) = ajz
n + βj(z), a2 = a0, (aj(6= 0, j = 0, 1, 2) are constants), (4.1)

and βj(z) (j = 0, 1, 2) are polynomials satisfying

deg(βj) ≤ n− 1, deg(P0 + P1 + P2) = deg(β0 + β1 + β2) = n− 1. (4.2)

Then we have a1 = −2a0 = −2a2. Set

P0(z) + P1(z) + P2(z) := P∗(z) = bzn−1 + · · · , (b 6= 0 is a constant), (4.3)

and

βj(z) = bjz
n−1 + · · · , (j = 0, 1, 2), (4.4)

where bj (j = 0, 1, 2) are constants. Since degP∗ = n− 1, we have

b0 + b1 + b2 6= 0.

Suppose that equation (1.3) possesses a meromorphic solution f(z) with ρ(f) < 1 and

finitely many poles at most. Without loss of generality, we may suppose that f(z) is an entire

function with σ(f) < 1 by Lemma 2.4.

We note that equation (1.3) can be written as

P2(z)∆2f(z) + (P1(z) + 2P2(z))∆f(z) + (P2(z) + P1(z) + P0(z))f(z) = 0. (4.5)

Thus, applying Lemma 2.3 to (4.5), there exists an ε-set E such that

P2(z)f
′′
(z)(1 + o(1)) + (P1(z) + 2P2(z))f

′
(z)(1 + o(1)) + P∗(z)f(z) = 0, (4.6)

for z 6∈ E. Here, H = {|z| = r : z ∈ E} is a set with finite logarithmic measure.

We see from Theorem 3.1 that there exists a set H ′ with finite logarithmic measure, such

that

f
′′
(z)

f(z)
=
(ν(r, f)

z

)2
(1 + o(1)),

f
′
(z)

f(z)
=
ν(r, f)

z
(1 + o(1)), (4.7)

where |f(z)| = M(r, f), |z| = r 6∈ [0, 1] ∪H ′ . Obviously, (4.6) and (4.7) yield

P2(z)
(ν(r, f)

z

)2
(1 + o(1)) + (P1(z) + 2P2(z))

ν(r, f)

z
(1 + o(1)) + P∗(z) = 0, (4.8)
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where |f(z)| = M(r, f), |z| = r 6∈ [0, 1] ∪ H ∪ H ′ . Since a2 = a0 and a2 + a1 + a0 = 0, then

a1 = −2a2, and for some constant c,

2P2(z) + P1(z) = 2β2(z) + β1(z) = czh + · · · , h ≤ n− 1. (4.9)

By applying asymptotic Method to (4.8), we see from (4.3)and (4.9) that the solution ν(r, f)

of (4.8) is asymptotically equal to the solution ν(r, f) of algebraic equation

a2z
n−2ν(r, f)2 + czh−1ν(r, f) + bzn−1 = 0, (4.10)

where b is a constant.

Since ρ(f) = σ < 1, σ is a rational number not less than 1
2 and ν(r, f) ∼ arσ as r →∞ for

some nonzero real number a. Three terms in the left hand side of (4.10) are, respectively,

a2a
2rn−2+2σ, carh−1+σ, brn−1. (4.11)

We have h− 1 + σ < n− 2 + 2σ since h ≤ n− 1. Thus, σ = 1
2 by n− 2 + 2σ = n− 1.

Secondly, we prove that all other meromorphic solutions satisfy ρ(f) ≥ 1. Contradicting

to the exception, we will have the following three steps.

Step 1. f has infinitely many poles. It follows from Lemma 2.6 that ρ(f) ≥ 1.

Step 2. If there exists some Pj(z) ≡ 0 (j ∈ {0, 1, 2 }), then by Theorem 1.4, we have that

ρ(f) ≥ 1.

If Pj(z)(j = 0, 1, 2) satisfy deg(P0 + P1 + P2) = max{degPj , j = 0, 1, 2} ≥ 1, then by

Lemma 2.7 and Lemma 2.8, we have ρ(f) ≥ 1.

If Pj(z) (j = 0, 1, 2) all are constants. On the contrary, we suppose that f(z) is an entire

solution of equation (1.3) with order ρ(f) < 1. Equation (1.3) can be rewritten as

a∆2f(z) + b∆f(z) + cf(z) = 0, (4.12)

where a = P2(z), b = P1(z) + 2P0(z), c = P0(z) + P1(z) + P2(z). Using the same method as

in the proof of the exception of Theorem 1.6, we obtain

af
′′
(z)(1 + o(1)) + bf

′
(z)(1 + o(1)) + cf(z) = 0, (4.13)

where z 6∈ F , F is an ε-set. Set G = {|z| = r : z ∈ F}. Then G is a set of finite logarithmic

measure, and

a
(ν(r, f)

z

)2
(1 + o(1)) + b

(ν(r, f)

z

)
(1 + o(1)) + c = 0, (4.14)

where |f(z)| = M(r, f), |z| = r 6∈ [0, 1] ∪ G ∪ G′ , where G
′

is of finite logarithmic measure.

Again by applying asymptotic method to (4.14), we see that the solution ν(r, f) of (4.14) is

asymptoticly equal to the solution ν(r, f) of equation

az−2ν(r, f)2 + bz−1ν(r, f) + c = 0. (4.15)

Since ρ(f) = σ < 1, then σ is a rational number not less than 1
2 and ν(r, f) ∼ drσ as

r → ∞ for some nonzero real number d. Thus, three terms in the left hand side of (4.15) are,

respectively,

ad2r2σ−2, bdrσ−1, cr0. (4.16)

Obviously, we have 0 > σ− 1 > 2σ− 2, a contradiction. Hence, when Pj(z) (j = 0, 1, 2) are all

constants, all entire solutions of equation (1.3) satisfy ρ(f) ≥ 1.
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Step 3. In what follows, we consider

deg(P0 + P1 + P2) < max{degPj , j = 0, 1, 2} = n,

and f(z) is an entire solution with ρ(f) < 1. We divide this proof into the following two cases.

Case 1. degP2 = degP1 = degP0 = n > degP∗ := deg(P2 + P1 + P0).

If a2 = a0 and deg(P0 + P1 + P2) = degP∗ = n − 1, then the exception of Theorem 1.6

holds. Hence, we only need to consider the following two subcases.

Subcase 1.1. a2 = a0 and deg(P∗) = k1 ≤ n− 2.

Using the same method as in the proof of the exception of Theorem 1.6, we see (4.5)-(4.8)

still hold.

Since a2 = a0, a2 + a1 + a0 = 0, we have a1 = −2a2. Thus, we assume

P1 + 2P2 = bsz
s + · · · , (s ≤ n− 1), P∗ = ck1z

k1 + · · · (k1 ≤ n− 2),

where bs, ck1 are nonzero constants, and so we obtain from (4.8) that

a2z
n−2ν(r, f)2(1 + o(1)) + bsz

s−1ν(r, f)(1 + o(1)) + ck1z
k1(1 + o(1)) = 0. (4.17)

By asymptotic Method, ν(r, f) is asymptotically equal to the solution ν(r, f) of algebraic equa-

tion

a2z
n−2ν(r, f)2 + bsz

s−1ν(r, f) + ck1z
k1 = 0. (4.18)

Since ρ(f) = σ < 1, σ is a rational number not less than 1/2, and ν(r, f) ∼ arσ as r →∞
for some nonzero real number a. Thus, three terms in the left hand side of (4.18)(or (4.17)) are

a2a
2rn−2+2σ, bsar

s−1+σ, ck1r
k1 . (4.19)

Since k1 ≤ n− 2, s ≤ n− 1, σ ≥ 1
2 , we conclude from (4.19) that there exists only one term

a2a
2rn−2+2σ with the highest degree, a contradiction.

Hence, if Pj(z) (j = 0, 1, 2) satisfy conditions of Subcase 1.1, every meromorphic solutions

of equation (1.3) satisfies ρ(f) ≥ 1.

Subcase 1.2. a2 6= a0 and deg(P∗) = k2 ≤ n− 1.

Since a2 + a1 + a0 = 0 and a2 6= a0, we have

a1 + 2a2 6= 0,

which yields deg(P1 + 2P2) = n. Thus, we assume, for a constant b(6= 0),

P1 + 2P2 = bzn + · · · ,

Similarly as in the proof of Subcase 1.1, (4.5)-(4.8) still hold, and the solution ν(r, f) of

(4.8) is asymptoticly equal to the solution ν(r, f) of algebraic equation

a2z
n−2ν(r, f)2 + bzn−1ν(r, f) + ck2z

k2 = 0, (4.20)

where P0(z) + P1(z) + P2(z) = ck2z
k2 + · · · , ck2(6= 0) and b 6= 0 are nonzero constants.

Since ρ(f) = σ < 1, σ is a rational number not less than 1/2 and ν(r, f) ∼ arσ as r → ∞
for nonzero real number a. Thus, three terms in the left hand side of (4.20) are, respectively,

a2a
2rn−2+2σ, barn−1+σ, ck2r

k2 . (4.21)
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We easily obtain from 1
2 ≤ σ < 1 and k2 ≤ n− 1 that

n− 2 + 2σ < n− 1 + σ and k2 < n− 1 + σ.

Thus, there exists only one term with the highest degree n− 1 + σ in (4.21), which contradicts

with (4.20).

Case 2. Assume that there are only two polynomials Pj(z), (j = 0, 1, 2) with highest

degree and deg(P2 + P1 + P0) := degP∗ < n. We would consider the following six subcases.

Subcase 2.1. degP2 = degP1 = n > degP0, degP0 ≤ deg(P1 + P2) < degP1.

Equation (1.3) can be rewritten as

P2(z)[f(z + 2)− f(z + 1)] + (P1(z) + P2(z))f(z + 1) + P0(z)f(z) = 0. (4.22)

By Lemmas 2.1-2.3 and the hypothesis that f(z) is an entire solution with ρ(f) < 1, we obtain

there exists ε-sets E1 and E
′

1 such that

f(z + 2)− f(z + 1) = f
′
(z + 1)(1 + o(1)), z 6∈ E1 and z →∞, (4.23)

f(z) = f(z + 1)(1 + o(1)), z 6∈ E
′

1 and z →∞. (4.24)

Substituting (4.23) and (4.24) into (4.22), we obtain

P2(z)
f
′
(z + 1)

f(z + 1)
(1 + o(1)) + P ∗1 (z) + P0(z)(1 + o(1)) = 0, z 6∈ E1 ∪ E

′

1 and z →∞. (4.25)

where P ∗1 (z) = P1(z) + P2(z).

Set H1 = {|z| = r, z ∈ E1 ∪ E
′

1}. Then H1 is a set of finite logarithmic measure. By

applying Theorem 3.1 to (4.25), we obtain

P2(z)
ν(r, f(z + 1))

z + 1
(1 + o(1)) + P ∗1 (z) + P0(z)(1 + o(1)) = 0, (4.26)

where |f(z+1)| = M(r, f(z+1)), |z| /∈ [0, 1]∪H ′1, ν(r, f(z+1)) is the central index of f(z+1).

Rewrite (4.26) as

P2(z)

(z + 1)P ∗1 (z)
ν(r, f(z + 1))(1 + o(1)) + 1 +

P0(z)

P ∗1 (z)
(1 + o(1)) = 0. (4.27)

Since degP ∗1 ≥ degP0, we have, for a constant d,∣∣∣ P0(z)

P ∗1 (z)

∣∣∣ ≤ d <∞ as z →∞. (4.28)

Since degP2 ≥ deg((z + 1)P ∗1 ) , we have, for a constant d1,∣∣∣ P2

(z + 1)P ∗1

∣∣∣ ≥ d1 > 0 and z →∞. (4.29)

Since ν(r, f(z + 1)) → ∞ as r 6∈ H1 ∪ H
′

1 and r → ∞, (4.27), (4.28) and (4.29) yield a

contradiction.

Subcase 2.2. degP2 = degP1 > degP0 > deg(P1 + P2).

Similarly as in the proof of Subcase 2.1, we also have (4.22)-(4.26), where E1, E
′

1, H1

and H
′

1 are defined as in the proof of Subcase 2.1.

Rewrite (4.26) as

P2(z)

(z + 1)P0(z)
ν(r, f(z + 1))(1 + o(1)) +

P ∗1 (z)

P0(z)
+ (1 + o(1)) = 0, (4.30)
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where P ∗1 (z) = P1(z) + P2(z) and |f(z + 1)| = M(r, f(z + 1)), |z + 1| /∈ H1 ∪H
′

1, (H1 ∪H
′

1 is

of finite logarithmic measure), ν(r, f(z + 1)) is the central index of f(z + 1).

Since degP2 > degP0 and degP ∗1 < degP0, we have∣∣∣ P2(z)

(z + 1)P0(z)

∣∣∣ ≥ d2 > 0,
∣∣∣P ∗1 (z)

P0(z)

∣∣∣→ 0 as z →∞. (4.31)

Thus, we again deduce a contradiction from (4.30) and (4.31) since ν(r, f(z + 1)) → ∞ as

r 6∈ H1 ∪H
′

1 and r →∞.

Subcase 2.3. degP2 = degP0 > degP1 and degP1 ≤ deg(P2 + P0) < degP2.

Equation (1.3) can be rewritten as

P2(z)(f(z + 2)− f(z)) + P1(z)f(z + 1) + (P2(z) + P0(z))f(z) = 0. (4.32)

By Lemmas 2.1-2.3 and the hypothesis that f(z) is an entire solution with ρ(f) < 1, we see

that there exists ε-sets E3 and E
′

3, such that for z 6∈ E3 ∪ E
′

3,

f(z + 2)− f(z) = 2f
′
(z)(1 + o(1)), f(z + 1) = f(z)(1 + o(1)) as z →∞. (4.33)

Set H3 = {|z| = r, z ∈ E3 ∪ E
′

3}. Then H3 is a set of finite logarithmic measure.

Substituting (4.33) into (4.32), we have

2P2(z)
f
′
(z)

f(z)
(1 + o(1)) + P1(z)(1 + o(1)) + P ∗3 (z) = 0, |z| = r 6∈ H3, (4.34)

where P ∗3 (z) = P2(z) + P0(z). By Theorem 3.1, we obtain

2P2(z)

zP ∗3 (z)
ν(r, f)(1 + o(1)) +

P1(z)

P ∗3 (z)
(1 + o(1)) + 1 = 0 (4.35)

holds outside an exceptional set H
′

3 of finite logarithmic measure, |f(z)| = M(r, f) and ν(r, f)

is the central index of f(z).

Together with the hypotheses of Subcase 2.3, we have

degP ∗3 ≥ degP1, degP ∗3 < degP2,

and so ∣∣∣ P1(z)

P ∗3 (z)

∣∣∣ ≤ a <∞, ∣∣∣ 2P2(z)

zP ∗3 (z)

∣∣∣ ≥ b > 0 as z →∞. (4.36)

for positive constants a and b .

Equations (4.35) and (4.36) again yield a contradiction since ν(r, f) → ∞ as r /∈ H3 ∪H
′

3

and r →∞.

Subcase 2.4. degP2 = degP0 > degP1 > deg(P2 + P0).

Similarly as in the proof of Subcase 2.3, we also have (4.32)-(4.34).

Again by Theorem 3.1, we obtain

2P2(z)

zP1(z)
ν(r, f)(1 + o(1)) + 1 + o(1) +

P ∗3 (z)

P1(z)
= 0 (4.37)

holds outside a exceptional set H
′

3 of finite logarithmic measure, |f(z)| = M(r, f), ν(r, f) is the

central index of f(z).

From the assumption of Subcase 2.4, we have

degP2(z) > degP1(z), degP1(z) > degP ∗3 ,
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and so ∣∣∣2P2(z)

zP1(z)

∣∣∣ ≥ a > 0,
∣∣∣P ∗3 (z)

P1(z)

∣∣∣→ 0 as z →∞. (4.38)

Equations (4.37) and (4.38) again yield a contradiction since ν(r, f) → ∞ as r /∈ H3 ∪H
′

3

and r →∞.

Subcase 2.5. degP0 = degP1 > degP2 and degP2 ≤ deg(P1 + P0) < degP1.

Rewrite (1.3) as

P2(z)f(z + 2) + P1(z)(f(z + 1)− f(z)) + (P1(z) + P0(z))f(z) = 0. (4.39)

Similarly as in the proof of Subcase 2.3, by Lemmas 2.1-2.3, there exists ε-sets E5 and E
′

5, such

that for z 6∈ E5 ∪ E
′

5 and z →∞,

f(z + 1)− f(z) = f
′
(z)(1 + o(1)), f(z + 2) = f(z)(1 + o(1)). (4.40)

Set H5 = {|z| = r, z ∈ E5 ∪ E
′

5}. Then H5 is a set of finite logarithmic measure.

Substituting (4.40) into (4.39), we obtain

P2(z)f(z)(1 + o(1)) + P1(z)f
′
(z)(1 + o(1)) + P ∗5 (z)f(z) = 0, |z| = r 6∈ H

′

5, (4.41)

where P ∗5 (z) = P1(z) + P0(z).

By Theorem 3.1, there exists a set H
′

5 of finite logarithmic measure, such that for |z| = r 6∈
H
′

5, |f(z)| = M(r, f),

P2(z)

P ∗5 (z)
(1 + o(1)) +

P1(z)

zP ∗5 (z)
ν(r, f)(1 + o(1)) + 1 = 0, (4.42)

where ν(r, f) is the central index of f(z).

From the assumption of Subcase 2.5, we have

degP ∗5 ≥ degP2, degP1 > degP ∗5 ,

and so for positive constants a and b,∣∣∣ P2(z)

P ∗5 (z)

∣∣∣ ≤ a <∞, ∣∣∣ P1(z)

zP ∗5 (z)

∣∣∣ ≥ b > 0 as z →∞. (4.43)

Equations (4.42) and (4.43) yield a contradiction since ν(r, f) → ∞ as |z| = r 6∈ H5 ∪H
′

5

and |f(z)| = M(r, f), r →∞.

Subcase 2.6. degP0 = degP1 > degP2 > deg(P1 + P0).

Similarly as in the proof of Subcase 2.5, we see (4.39)-(4.41) also hold.

By Theorem 3.1, we obtain that

(1 + o(1)) +
P1(z)

zP2(z)
ν(r, f)(1 + o(1)) +

P ∗5 (z)

P2(z)
= 0 (4.44)

holds outside a exceptional set H
′

6 of finite logarithmic measure, ν(r, f) is the central index of

f(z). From the assumption of Subcase 2.6, we easily obtain∣∣∣ P1(z)

zP2(z)

∣∣∣ ≥ a > 0,
∣∣∣P ∗5 (z)

P2(z)

∣∣∣→ 0 as z →∞. (4.45)

Equations (4.44) and (4.45) yield a contradiction since ν(r, f)→∞ as r /∈ H6∪H
′

6 and r →∞.

�
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5 Discussions

We discuss the propositions of asymptotic method and apply them to difference equations.

We verify the existence of the slowly growing solutions to difference equations obtained by

Ishizaki-Yanagihara’s Wiman-Valiron method and Ishizaki-Wen’s binomial series method. By

asymptotic method, we give positive answers to Questions 1.2 and 1.3 for first order and second

order difference equations. It is also worth discussing how to detect the slowly growing solutions

of higher order linear difference equations by asymptotic method.
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