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Abstract

The quasilinear equation −
(

u′(x)√
1+(u′(x))2

)′
= λ

(1−u)2 − λε2

(1−u)4 with the boundary condition u(−L) = u(L) = 0

governs the steady-state solutions of a regularized MEMS model. We prove that for any evolution parameters

ε ∈ (0, 1) and L > 0, the global bifurcation curve of positive solutions is strictly increasing or ⊃-like shaped

or S-like shaped in the (λ, ‖u‖∞)-plane. The bifurcation curves present a variety of shapes and structures,

significantly different from those in non-regularized case (i.e., ε = 0) and in the simplified semilinear case.

The main tools are some new time-map techniques, the total positivity theory, and Sturm’s Theorem.

Keywords: S-shaped bifurcation curve, Micro-Electro-Mechanical System, Bistability, Total positivity,

Exact multiplicity
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1. Introduction

In the last fifteen years, global bifurcation curves and exact multiplicity of positive solutions for the

quasilinear problem 
−
(

u′(x)√
1 + (u′(x))2

)′
= λf(u), −L < x < L,

u(−L) = u(L) = 0,

(1.1)

with various different types of nonlinearities f(u) have been extensively studied (e.g., [1–17]). One of

remarkable features of those research works is that the length L can effect the structure of bifurcation

curves. (1.1) is also known as one-dimensional prescribed (mean) curvature problem. Due to the special

geometric meaning of the mean curvature operatorM : u 7→ div
(

∇u√
1+|∇u|2

)
, quasilinear equations of mean

curvature type naturally appear in many physical models such as liquid drops in capillary theory ([18]), phase

transition with high spatial gradients ([2, 19]), electrostatic devices in Micro-Electro-Mechanical System

(MEMS, [20, 21]), corneal shapes of eyes ([22, 23]).
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Figure 1: Conjectured global bifurcation curves of (1.3) with varying ε ∈ (0, 1): (i) 0 < ε < εc, (ii) ε = εc, (iii) εc < ε < 1.

In this paper, we are concerned with the classification and evolution of global bifurcation curves of

positive solutions for the three-parameter quasilinear problem
−
(

u′(x)√
1 + (u′(x))2

)′
= λ

[
1

(1− u)2
− ε2

(1− u)4

]
, −L < x < L,

u(−L) = u(L) = 0,

(1.2)

where λ is a positive bifurcation parameter, ε < 1 and L are two positive evolution parameters. The relevant

semilinear case 
−u′′(x) =

λ

(1− u)2
− λε2

(1− u)4
, −1 < x < 1,

u(−1) = u(1) = 0,

(1.3)

arises in a regularized model in Micro-Electro-Mechanical Systems (MEMS); see Lindsay et al. [24, 25].

The model is proposed to describe the post-touchdown configurations in an electrostatic MEMS device.

The parameter λ is proportional to the square of the voltage applied to the device. Physically, the new

regularizing term − λε2

(1−u)4 induces a potential which simulates the effect of a small insulating layer put on

the ground plate to prevent a short circuit. Mathematically, the regularizing term eliminates the singularity

at u = 1 occurring in the non-regularized model (i.e., the case of ε = 0). The numerical simulation in [24]

suggests that there exists a critical value of bistability εc ∈ (ε̃, ε̌) such that the bifurcation curve for (1.3)

is S-shaped for 0 < ε < εc and strictly increasing for εc 6 ε < 1; see Fig.1(with ‖u‖22 instead of ‖u‖∞).

Recently, Iuorio et al. [26, Theorem 1.2(i)] proved that the bifurcation curve is S-shaped for sufficiently

small ε in the (λ, ‖u‖22)-plane, using geometric singular perturbation theory and the blow-up method. Very

recently, Lao et al. [27] proved that there exist three constants ε̂, ε̃, and ε̌(≈ 0.25458, 0.26262, and 0.29212,

respectively) such that the bifurcation curve in the (λ, ‖u‖∞)-plane is S-shaped for 0 < ε 6 ε̂, S-like shaped

for ε̂ < ε 6 ε̃, and strictly increasing for ε̌ 6 ε < 1, using the quadrature method and some time-map

techniques.

Problem (1.3) is a simplified case of (1.2). Recall the following prescribed mean curvature problem
−div

(
∇u√

1 + |∇u|2

)
=

λ

(1− u)2
, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.4)
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governs the positive steady-states from a non-regularized MEMS model built by Brubaker and Pelesko [20].

If it is assumed that the elastic membrane in MEMS capacitor only has a small deflection, i.e., |∇u| � 1,

then by dropping the small gradient term, (1.4) is reduced to the classic non-regularized MEMS problem
−∆u =

λ

(1− u)2
, x ∈ Ω,

u = 0, x ∈ ∂Ω.

(1.5)

which has been deeply studied by researchers; see [28, 29] and references therein. The quasilinear non-

regularized MEMS model (1.4) and its generalizations have been investigated in [1, 21, 30–33]. In particular,

its one-dimensional case is the following quasilinear problem
−
(

u′(x)√
1 + (u′(x))2

)′
=

λ

(1− u)2
, −L < x < L,

u(−L) = u(L) = 0,

(1.6)

which is also the limit case of problem (1.2) corresponding to ε→ 0. Global bifurcation diagrams and exact

multiplicity of positive solutions of (1.6) have been proved in Brubaker and Pelesko [1] and Pan and Xing

[32] as follows:
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Figure 2: ⊃-shaped bifurcation curves of (1.6) or (1.2) with ε = 0: (i) 0 < L < L0, (ii) L = L0, (iii) L > L0.

Theorem 1.1 ([1, 32]). Consider positive solutions of (1.6) in C2(−L,L)
⋂
C[−L.L]. Then there exists a

positive constant L0(≈ 0.34997) such that the following assertions hold (see Fig.2):

(i) If 0 < L < L0, then there exist λ∗ > λ̌ > λ̂ > 0 such that (1.6) has no positive solution for λ ∈ (λ∗,+∞),

exactly one positive solution for λ ∈ (λ̂, λ̌) ∪ {λ∗}, exactly two positive solutions for λ ∈ (0, λ̂] ∪ [λ̌, λ∗).

(ii) If L > L0, then there exists λ∗ > 0 such that (1.6) has no positive solution for λ ∈ (λ∗,+∞), exactly

one positive solution for λ = λ∗, exactly two positive solutions for λ ∈ (0, λ∗).

(iii) λ̌ (respectively, λ̂) is strictly decreasing (respectively, increasing) with respect to L ∈ (0, L0), and

limL→L0
λ̌ = limL→L0

λ̂, denoting the limit still by λ̌. All solutions belong to C2[−L,L], except for the

solutions u corresponding to λ̂ and λ̌ on the upper solution branch, satisfying u′(±L) = ∓∞.

In contrast to (1.6), the bifurcation diagram for the following one-dimensional case of (1.5)
−u′′(x) =

λ

(1− u)2
, −1 < x < 1,

u(−1) = u(1) = 0.

(1.7)
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is significantly different and can be depicted in Fig.2(iii) (see e.g., [34, Theorems 2.5, 2.9, and Lemma 3.2] and

[29, Fig.7.16]). In particular, the length of the interval does not change the structure of the bifurcation curve

for (1.7), but for (1.6). As sketched in Fig.2, the splitting phenomenon happens for (1.6) when the length

L < L0. For more research works on quasilinear equations in MEMS models or with singular nonlinearities,

we refer the reader to [3, 15, 21, 35, 36]. So far, no research results are known for (1.2) with ε > 0.

Motivated by the results mentioned above, we in this paper will investigate the classification and evolution

of bifurcation curves for positive solutions of (1.2) with varying evolution parameters ε and L. By a solution

we mean a function u ∈ C2(−L,L)
⋂
C[−L,L] satisfying (1.2). For any ε ∈ (0, 1), denote the bifurcation

curve (or solution curve) of (1.2) by

Cε =
{

(λ, ‖u‖∞) | λ > 0 and u is a positive solution of (1.2)ε,λ

}
.

Note that all positive solutions u of (1.2) are even in (−L,L) and can be parameterized by u(0) = maxu.

Similarly as in [4, 37], we introduce several terms to describe shapes of Cε in the (λ, ‖u‖∞)-plane for

simplicity. We call the bifurcation curve Cε to be ⊃-shaped (respectively, ⊂-shaped), if Cε turns exactly once

and to the left (respectively, the right); call Cε to be ⊃-like shaped (respectively, ⊂-like shaped), if Cε turns

exactly odd times and eventually to the left (respectively, the right); call Cε to be S-shaped (respectively,

reversed S-shaped) if Cε turns exactly twice and eventually to the right (respectively, the left); call Cε to be

S-like shaped (respectively, reversed S-like shaped) if Cε turns exactly positive even times and eventually to

the right (respectively, the left). S-like shaped is also referred to as roughly S-shaped in [37, 38]. Note that

Lemma 2.7 in [8] implies that for each value r, (1.2) admits at most one λ and at most one positive solution

u so that ‖u‖∞ = r. This means that Cε cannot bend down or up, but can turn to the left and the right.

So the above definitions are not ambiguous. Here, we do not require that the curve Cε must be connected.

Our main tools are time-map method, total positivity theory of integral operator, and Sturm’s Theorem

for polynomials. Different from the recent works [4, 5], the nonlinearity f(u) = 1
(1−u)2 − ε2

(1−u)4 here is a

convex–concave but non-monotonic function, which brings new difficulties to analyze the time-map. We

develop some new time-map techniques to deal with the complicated situation in which the derivative of the

time-map changes sign at the boundary of its domain as λ varies. With the aid of total positivity theory

and Sturm’s Theorem, we overcome this difficulty and prove global bifurcation results for different ranges of

ε and L; see Theorems 2.1–2.8. These results show that the patterns of bifurcation curves are very complex

and diverse, significantly different from those in the semilinear case (1.3) and in the quasilinear case (1.6)

(i.e., (1.2) with ε = 0). We also give a conjecture on the complete classification and evolution of bifurcation

curves Cε for (1.2) in the (λ, ‖u‖∞)-plane with varying ε and L; see Fig.15. For the convenience of the

reader, some constants appearing in the present paper are collected in Table 1.

We organize the paper as follows. In Section 2, we state our main results. In Section 3, we give various

lemmas about the properties of the time-map. The main theorems will be proved in Section 4. Finally, we

give two conjectures on the classification and evolution of bifurcation curve Cε in Section 5. The proofs of

two inequalities required in the previous arguments are placed in the Appendix.

2. Main results

The following theorems are our main results.
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Table 1: Definitions and numerical evaluations of some constants appearing in the present paper.

Symbol of Constant Numerical Evaluation Definition and Source

L0 ≈ 0.34997 By Theorem 1.1 or [1, 32]

ε̌ (= 4
√

30
75 ) ≈ 0.29212 By (3.10) or [27]

ε̃ ≈ 0.26262 By Lemma 3.5 or [27]

ε̂ ≈ 0.25458 By Lemma 3.5 or [27]

ε∗ ≈ 0.13123 By Lemma 3.15

||u||∞

λ0 λ∗

1−ε

λF (‖u‖∞)=1

Figure 3: Monotone increasing bifurcation curves Cε for (1.2) with
√
2

2
6 ε < 1.

Theorem 2.1. For any ε ∈ (0, 1) and L > 0, the bifurcation curve Cε of (1.1) is bounded in the (λ, ‖u‖∞)-

plane, always starts from the origin (0, 0) and eventually stops at some point on the derivative blow-up

curve {(λ, r) | λ > λ1−ε and r ∈ (0, 1 − ε) satisfy λF (r) = 1}, where λ1−ε := 1
F (1−ε) , r := ‖u‖∞, and

F (r) := 1
1−r − ε2

3(1−r)3 + ε2

3 −1. Furthermore, Cε is either a C1 curve or composed of two separate C1 curves

(one of them may be a singleton).

Remark 2.1. The solutions u corresponding to the stopping points on the blow-up curve λF (‖u‖∞) = 1 have

distinct boundary regularity from the other solutions. Precisely, these solutions belong to C2(−L,L)
⋂
C[−L,L]

satisfying u′(±L) = ∓∞, while the others belong to C2[−L,L] and hence have higher regularity to the bound-

ary; see Section 3 for more details.

Theorem 2.2. If
√

2
2 6 ε < 1, then the bifurcation curve Cε for (1.2) is strictly increasing. Precisely, for

any L > 0, there exists λ∗ > 0 such that (1.2) has no positive solution for λ ∈ (λ∗,∞) and exactly one

positive solution for λ ∈ (0, λ∗].

In view of Theorem 2.1, the bifurcation diagram for
√

2
2 6 ε < 1 is depicted in Fig.3. In what follows, we

will focus on the different shapes of Cε for varying ε and no longer discuss the exact position of the stopping

point for simplicity.

Theorem 2.3. If
√

30
10 6 ε <

√
2

2 , then the bifurcation curve Cε for (1.2) is ⊃-like shaped or S-like shaped

or strictly increasing. Precisely, there exist positive numbers L̄ < ¯̄L such that the following assertions hold:

(i) (See Fig.4(ii)) If 0 < L < L̄, then Cε is ⊃-like shaped. Moreover, there exist positive numbers λ∗ < λ∗

such that (1.2) has no positive solution for λ ∈ (λ∗,+∞), at least one positive solution for λ ∈ (0, λ∗)∪{λ∗},
5



at least two positive solutions for λ ∈ [λ∗, λ∗).

(ii)(See Fig.4(iii) or (iv)) If L̄ < L < ¯̄L, then Cε is S-like shaped or strictly increasing. If Cε is strictly

increasing, then the results in Theorem 2.2 hold, while if Cε is S-like shaped, then (1.2) has at least three

positive solutions for some λ > 0.

(iii)(See Fig.4(iv)) If L > ¯̄L, then Cε is strictly increasing, and the results in Theorem 2.2 hold.

(iv)(See Fig.4(ii) or (iii)) If L = L̄, then Cε is ⊃-like shaped or S-like shaped.
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Figure 4: ⊃-shaped, ⊃-like shaped, S-like shaped, and strictly increasing bifurcation curves Cε for (1.2) with different ranges of

ε and L. Case (A)
√

30
10

6 ε <
√
2
2

: (ii) 0 < L < L̄, (ii)(iii) L = L̄, (iii)(iv) L̄ < L < ¯̄L, (iv) L > ¯̄L; Case (B) 4
√
30

75
6 ε <

√
30

10
:

(i) 0 < L < L̄, (ii)(iii) L = L̄, (ii) Lγ < L 6 L̄, (iii)(iv) L̄ < L < ¯̄L, (iv) L > ¯̄L; Case (C) ε̃ 6 ε < 4
√
30

75
(≈ 0.29212):

(i) 0 < L 6 Lγ , (ii) Lγ < L < L̄, (ii)(iii) L = L̄, (iii)(iv) L > L̄; Case (D) 19
100

6 ε < ε̃(≈ 0.26262): (i) 0 < L 6 Lγ ,

(ii) Lγ < L < L̄, (ii)(iii) L = L̄, (iii) L > L̄.

Theorem 2.4. If 4
√

30
75 6 ε <

√
30

10 , then the bifurcation curve Cε for (1.2) is ⊃-like shaped or S-like shaped

or strictly increasing. Precisely, there exist positive numbers Lγ < L̄ < ¯̄L such that the following assertions

hold:

(i) (See Fig.4(i)) If 0 < L 6 Lγ , then Cε is ⊃-shaped. Precisely, there exist positive numbers λ∗ < λ∗ such

that (1.2) has no positive solution for λ ∈ (λ∗,∞), exactly one positive solution for λ ∈ (0, λ∗) ∪ {λ∗},
exactly two positive solutions for λ ∈ [λ∗, λ∗).

(ii) (See Fig.4(ii)) If Lγ < L < L̄, then Cε is ⊃-like shaped, and the results in Theorem 2.3(i) hold.

(iii) (See Fig.4(iii) or (iv)) If L̄ < L < ¯̄L, then Cε is S-like shaped or strictly increasing, and the results in

Theorem 2.3(ii) hold.

(iv) (See Fig.4(iv)) If L > ¯̄L, then Cε is strictly increasing, and the results in Theorem 2.2 hold.

(v) (See Fig.4(ii) or (iii)) If L = L̄, then Cε is ⊃-like shaped or S-like shaped.

Let ε̃ and ε∗ be the constants given in Table 1.

Theorem 2.5. If ε̃ 6 ε < 4
√

30
75 , then the bifurcation curve Cε for (1.2) is ⊃–like shaped, S-like shaped or

strictly increasing. Precisely, there exist positive numbers Lγ < L̄ such that the following assertions hold:

(i) (See Fig.4(i)) If 0 < L 6 Lγ , then Cε is ⊃-shaped, and the results in Theorem 2.4(i) hold.

(ii) (See Fig.4(ii)) If Lγ < L < L̄, then Cε is ⊃-like shaped, and the results in Theorem 2.3(i) hold.

(iii) (See Fig.4(iii) or (iv)) If L > L̄, then Cε is S-like shaped or strictly increasing, and the results in

Theorem 2.3(ii) hold.

(iv) (See Fig.4(ii) or (iii)) If L = L̄, then Cε is ⊃-like shaped or S-like shaped.
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Theorem 2.6. If 19
100 6 ε < ε̃, then the bifurcation curve Cε for (1.2) is ⊃-like shaped or S-like shaped.

Precisely, there exist positive numbers Lγ < L̄ such that the following assertions hold:

(i) (See Fig.4(i)) If 0 < L 6 Lγ , then Cε is ⊃-shaped, and all the results in Theorem 2.4(i) hold.

(ii) (See Fig.4(ii)) If Lγ < L < L̄, then Cε is ⊃-like shaped, and all the results in Theorem 2.3(i) hold.

(iii) (See Fig.4(iii)) If L > L̄, then Cε is S-like shaped and (1.2) has at least three positive solutions for some

λ > 0.

(iv) (See Fig.4(ii) or (iii)) If L = L̄, then Cε is ⊃-like shaped or S-like shaped.

Theorem 2.7. If ε∗ < ε < 19
100 , then the bifurcation curve Cε for (1.2) is ⊃-like shaped or S-like shaped,

and it possibly consists of two disjoint C1 components. Precisely, there exists L̄ > 0 such that the following

assertions hold:

(i) If 0 < L < L̄, then one of the following assertions holds:

(i-1) (See Fig.5(i-1)) Cε consists of two disjoint C1 components, where the lower component is ⊃-shaped and

the upper component is reversed S-like shaped or strictly decreasing. Moreover, there exist positive numbers

λ∗ < λ̂ < λ̌ < λ∗ such that (1.2) has no positive solutions for λ ∈ (λ∗,+∞), exactly one positive solution for

λ ∈ (λ̂, λ̌)∪ {λ∗}, at least one positive solution for λ ∈ (0, λ∗), exactly two positive solutions for λ ∈ [λ̌, λ∗),

at least two positive solutions for λ ∈ [λ∗, λ̂].

(i-2) (See Fig.5(i-2)) Cε is C1 and ⊃-like shaped, and the results in Theorem 2.3(i) hold.

(ii) If L > L̄, then one of the following assertions holds:

(ii-1)(See Fig.5(ii-1)) Cε consists of two disjoint C1 components, where the lower component is ⊃-shaped and

the upper component is ⊂-like shaped. Moreover, there exist positive numbers λ̃ < λ∗ < λ̂ < λ̌ < λ∗ such

that (1.2) has no positive solution for λ ∈ (λ∗,+∞), exactly one positive solution for λ ∈ (λ̂, λ̌) ∪ {λ∗},
at least one positive solution for λ ∈ (0, λ̃), exactly two positive solutions for [λ̌, λ∗), at least two positive

solutions for λ ∈ (λ∗, λ̂] ∪ {λ̃}, at least three positive solutions for λ ∈ (λ̃, λ∗].

(ii-2)(See Fig.5(ii-2)) Cε is C1 and S-like shaped, and (1.2) has at least three positive solutions for some

λ > 0.

(iii) If L = L̄, then either (i) or (ii) occurs.
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1−ε

Figure 5: ⊃-like shaped and S-like shaped bifurcation curves Cε (possibly split into two disjoint C1 components) of (1.2) with

ε∗(≈ 0.13123) < ε < 19
100

: (i) 0 < L < L̄; (ii) L > L̄.

Theorem 2.8. If 0 < ε 6 ε∗, then the bifurcation curve Cε for (1.2) is ⊃-like shaped or S-like shaped, and

possibly consists of two disjoint C1 components. Precisely, there exist positive numbers L∗, L∗, and L̄, with
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L∗ < min{L̄, L∗}, such that the following assertions hold:

(i) (See Fig.6(i)) If 0 < L < L∗, then Cε is ⊃-shaped, and the results in Theorem 2.4(i) hold.

(ii) (See Fig.6(ii)) If L∗ 6 L < L∗ and L < L̄, then Cε consists of two disjoint C1 components, where the

lower component is ⊃-shaped and the upper component is reversed S-like shaped or strictly decreasing, and

the results in Theorem 2.7(i-1) hold.

(iii) If L is between L̄ and L∗, then one of the following assertions holds:

(iii-1) (See Fig.6(iii-1)) If L∗ > L̄ and L̄ < L < L∗, then Cε consists of two disjoint C1 components, where

the lower component is ⊃-shaped and the upper component is ⊂-like shaped, and the results in Theorem

2.7(ii-1) hold.

(iii-2) (See Fig.6(iii-2)) If L∗ < L̄ and L∗ 6 L < L̄, then Cε is ⊃-like shaped, and all results in Theorem

2.3(i) hold.

(iv) (See Fig.6(iv)) If L > L̄ and L > L∗, then Cε is C1 and S-like shaped, and (1.2) has at least three

positive solutions for some λ > 0.

(v) If L = L̄, then either (ii) or (iii) occurs.

λ∗

λ

0

||u||∞

λ∗

λ

0

||u||∞

λ∗λ∗ λ̂ λ̌

λ

0

||u||∞

λ∗λ∗ λ̌λ̃ λ̂

λ

0

||u||∞

λ∗λ∗

λ

0

||u||∞

λ∗λ∗
(i) (ii)

(iii-1)

(iii-2)

(iv)
λ̃

1−ε

Figure 6: ⊃-shaped, ⊃-like shaped, and S-like shaped bifurcation curves Cε of (1.2) with 0 < ε 6 ε∗(≈ 0.13123). (i) 0 < L < L∗;

(ii) L∗ 6 L < L∗ and L < L̄; (iii-1) L∗ > L̄ and L̄ < L < L∗; (iii-2) L∗ < L̄ and L∗ 6 L < L̄; (iv) L > L̄ and L > L∗.

The proofs will be given in Section 4.

3. Lemmas

Let ε ∈ (0, 1). Set f(u) := 1
(1−u)2 − ε2

(1−u)4 , a := a(ε) = 1−
√

2ε, and γ := γ(ε) = 1−
√

30
3 ε. Then f(u)

satisfies the following properties:

(a) f(u) > 0 on [0, 1− ε) and f(1− ε) = 0; f(u) ∈ C∞[0, 1− ε].
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0

||u||∞

λ

1−ε

F−1( 1λ )
α

λαλ1−ε λa λγ

a

γ

0

L

1−ε
r

Tλ(r)

||u||∞

Figure 7: Time-map Tλ(r) and the domain Dε,λ. The horizontal line ‖u‖∞ = 1− ε, the blow-up curve ‖u‖∞ = F−1( 1
λ

), and

λα for any α ∈ (0, 1 − ε], the special values λ1−ε := 1
F (1−ε) for ε ∈ (0, 1), λa := λa(ε) for ε ∈ (0,

√
2
2

), and λγ := λγ(ε) for

ε ∈ (0,
√
30

10
).

(b) If ε ∈ (0,
√

2
2 ), then a > 0, f ′(u) > 0 on [0, a) , f ′(a) = 0, and f ′(u) < 0 on (a, 1− ε]. If ε ∈ [

√
2

2 , 1), then

f ′(u) < 0 on (0, 1− ε].
(c) If ε ∈ (0,

√
30

10 ), then γ > 0, f ′′(u) > 0 on [0, γ), f ′′(γ) = 0, and f ′′(u) < 0 on (γ, 1 − ε]. If ε ∈ [
√

30
10 , 1),

then f ′′(u) < 0 on (0, 1− ε].
Set F (u) =

∫ u
0
f(t) dt. Then F (u) is strictly increasing when f(u) is nonnegative. Define

λα :=
1

F (α)
for α ∈ (0, 1− ε];

see the right of Fig.7. Clearly, λα is strictly decreasing with respect to α. Since all positive solutions of

(1.2) are symmetric and even, the time-map formula which we apply to study (1.2) takes the form ([6, 15]):

Tλ(r) =

∫ r

0

1 + λF (u)− λF (r)√
1− [1 + λF (u)− λF (r)]2

du (3.1)

= r

∫ 1

0

1 + λF (rs)− λF (r)√
1− [1 + λF (rs)− λF (r)]2

ds, (3.2)

and it is well-defined for r = u(0) = ‖u‖∞ ∈ Dε,λ, where

Dε,λ =

{ (
0, F−1

(
1
λ

)]
, if λ > λ1−ε,

(0, 1− ε), if λ 6 λ1−ε.
(3.3)

That is, the domain Dε,λ of Tλ(r) depends on the values of ε and λ; see Fig.7. Moreover, by [6, Lemma 3.1]

and [15, Lemmas 3.6 and 3.7], the smoothness of f implies that Tλ(r) is smooth with respect to r ∈ Dε,λ as

well as to λ ∈ (0, λr] (the derivative at the endpoint means the left derivative).

From the uniqueness of solution for the associated initial value problem, it follows that each positive

solution u of (1.2) just corresponds to a solution of the equation

Tλ(r) = L satisfying r = ‖u‖∞. (3.4)

Thus ones can derive global bifurcation curves and exact numbers of positive solutions for (1.2) by analyzing

shapes of Tλ(r) on the domain Dε,λ. Moreover, since the explicit formula (3.1) of the time-map comes from

the first integral (the energy identity)

1− 1√
1 + (u′)2

= λF (r)− λF (u),

9



it follows that when r = F−1
(

1
λ

)
, the associated solution u must satisfy |u′(±L)| =∞, and hence this solu-

tion only belongs to C2(−L,L)
⋂
C[−L,L], not C2[−L,L]. Other solutions corresponding to r 6= F−1

(
1
λ

)
actually belong to C2[−L,L] and have higher regularity due to the boundedness of the derivatives.

For any given ε ∈ (0, 1), denote by h the supremum of Tλ on Dε,λ, i.e.,

h(λ) := sup
{
Tλ(r) | r ∈

(
0, F−1

( 1

λ

)]}
for λ > λ1−ε.

The following lemmas give some properties of Tλ(r) and h(λ).

Lemma 3.1. Let Tλ(r) and h(λ) be defined as above. Then the following assertions hold:

(i) For any r ∈ (0, 1− ε), Tλ(r) is strictly decreasing with respect to λ ∈ (0, λr] and limλ→0 Tλ(r) = +∞.

(ii) limr→0 Tλ(r) = 0 and limr→0 T
′
λ(r) = +∞ for all λ > 0.

(iii) h(λ) is well-defined, continuous, and strictly decreasing with respect to λ > λ1−ε. Moreover,

limλ→+∞ h(λ) = 0.

Proof. (i) Notice that for any r ∈ (0, 1 − ε), (0, r] ⊂ (0, F−1( 1
λ )] for all λ ∈ (0, λr]. Since 0 < F (r) −

F (u) < 1
λ for all 0 < u < r < 1 − ε and t 7→ 1−t√

1−(1−t)2
is strictly decreasing with respect to t ∈

(0, 1), it follows from (3.1) that T is strictly decreasing with respect to λ ∈ (0, λr]. Moreover, since√
1− [1 + λF (u)− λF (1− ε)]2 → 0+ and 1 + λF (u)− λF (1− ε)→ 1− as λ→ 0, it follows from (3.1) that

limλ→0 Tλ(r) = +∞.

(ii) Since f(0) = 1− ε2 > 0, by [12, Propositions 2.6 and 2.7], we obtain the results of limits.

(iii) First, since Tλ(r) is continuous with respect to λ and r and limr→0 Tλ(r) = 0, it follows that

h(λ) < +∞ is well-defined and continuous. Second, since limr→0 Tλ(r) = 0, by the proof of [12, Proposition

2.13(2)], we immediately obtain that h(λ) is strictly decreasing with respect to λ > λ1−ε. At final, since

limλ→+∞ F−1( 1
λ ) = 0 and r ∈ (0, F−1( 1

λ )] as λ is enough large, it follows from (ii) that limλ→+∞ h(λ) =

0.

In what follows, we denote ∂Tλ(r)
∂r by T ′λ(r) for simplicity.

Lemma 3.2. For any ε ∈ [
√

2
2 , 1) and λ > 0, T ′λ(r) > 0 on Dε,λ.

Proof. If ε >
√

2
2 , then f ′(u) < 0 on (0, 1 − ε). For any r ∈ Dε,λ, by setting s = 1 − λF (r) and y =

1 + λF (u)− λF (r), we obtain from (3.1) that

Tλ(r) = T̃λ(s) =

∫ 1

s

y√
1− y2

1

λf
(
F−1

(
y−s
λ

)) dy.

Differentiating yields

T ′λ(r) = T̃ ′λ(s) · ds

dr
(3.5)

=

(
− s√

1− s2

1

λf(F−1(0))
+

∫ 1

s

y√
1− y2

f ′
(
F−1

(
y−s
λ

))
λ2
[
f
(
F−1

(
y−s
λ

) )]3 dy

)
· (−λf(r)),

where the first term of the right-hand side is well-defined due to f(0) > 0. Since f ′(u) < 0 on (0, 1− ε), it

follows from (3.5) that T ′λ(r) > 0 for all r ∈ Dε,λ.
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Lemma 3.3. For the time-map Tλ(r), the following assertions hold:

(i) For ε ∈ (0,
√

2
2 ) and λ > λa, Tλ(r) has at least one critical point, a local maximum, on

(
0, F−1

(
1
λ

)]
.

(ii) For ε ∈ (0,
√

30
10 ) and λ > λγ , Tλ(r) has exactly one critical point, a local maximum, on

(
0, F−1

(
1
λ

)]
.

Proof. (i) If ε <
√

2
2 , then a > 0. For any y ∈ (0, 1) and λ > λa, F−1

(
y
λ

)
< F−1( 1

λ ) 6 F−1( 1
λa

) = a. Thus

f ′(F−1( yλ )) > 0 for all y ∈ (0, 1).

Let r = F−1
(

1
λ

)
in (3.5). Then s = 0 and

T ′λ(F−1
( 1

λ

)
) = −

∫ 1

0

y√
1− y2

f ′
(
F−1

(
y
λ

))
λ2
[
f
(
F−1

(
y
λ

))]3 dy · λf(F−1
( 1

λ

)
) < 0,

since f ′(F−1( yλ )) > 0 for all y ∈ (0, 1). Combining Lemma 3.1(ii), we obtain that T ′λ(r) has at least one

critical point, a local maximum, on
(
0, F−1

(
1
λ

)]
.

(ii) If ε <
√

30
10 , then γ > 0. For any y ∈ (0, 1) and λ > λγ , F−1( yλ ) < F−1( 1

λ ) 6 F−1( 1
λγ

) = γ < a.

Thus f ′(F−1( yλ )) > 0 for all y ∈ (0, 1). The same argument as in (i) gives that T ′λ(F−1( 1
λ )) < 0 for all

ε ∈ (0,
√

10
3 ) and λ > λγ . Thus, Tλ(r) has at least one critical point on

(
0, F−1

(
1
λ

)]
.

If λ > λγ , then
(
0, F−1

(
1
λ

))
⊂ (0, γ). Since f is convex on

(
0, F−1

(
1
λ

)]
for λ > λγ , by the proof of

[8, Theorem 3.4] or [15, Theorem 2.1], we obtain that Tλ(r) has at most one critical point on
(
0, F−1

(
1
λ

)]
.

Therefore, Tλ(r) has exactly one critical point, a local maximum, on
(
0, F−1

(
1
λ

)]
.

Next we give some auxiliary functions to investigate the properties of T ′λ(r).

By (3.1), we obtain that

T ′λ(r) =

∫ 1

0

1 + λF (rs)− λF (r)√
1− [1 + λF (rs)− λF (r)]2

ds+

∫ 1

0

λr[f(rs)s− f(r)]

{1− [1 + λF (rs)− λF (r)]2}3/2
ds

=

∫ 1

0

[1 + λF (rs)− λF (r)]{1− [1 + λF (rs)− λF (r)]2}+ λr[f(rs)s− f(r)]

{1− [1 + λF (rs)− λF (r)]2}3/2
ds. (3.6)

Set

∆F = F (r)− F (rs) and ∆f = rf(r)− rsf(rs) for s ∈ (0, 1).

Notice that 0 < λ∆F < 1 for all λ > 0, r ∈ Dε,λ and s ∈ (0, 1). Then differentiating yields that

T ′λ(r) =

∫ 1

0

(1− λ∆F )(1− (1− λ∆F )2)− λ∆f

{1− (1− λ∆F )2}3/2
ds =

∫ 1

0

λ3∆F 3 − 3λ2∆F 2 + 2λ∆F − λ∆f

{1− (1− λ∆F )2}3/2
ds (3.7)

<

∫ 1

0

λ2∆F 2 − 3λ2∆F 2 + 2λ∆F − λ∆f

{1− (1− λ∆F )2}3/2
ds <

∫ 1

0

λ(2∆F −∆f)

{1− (1− λ∆F )2}3/2
ds

=
λ

r

∫ r

0

θε(r)− θε(u)

{1− [1 + λF (u)− λF (r)]2}3/2
du, (3.8)

where

θε(u) := 2F (u)− uf(u) = 2

∫ u

0

f(t) dt− uf(u). (3.9)

Then

θ′ε(u) = f(u)− uf ′(u) =
(1− u)2(1− 3u)− ε2(1− 5u)

(1− u)5
.

11



By [27, Lemma 3], θε(u) is strictly increasing on [ε̌, 1), where

ε̌ := max
u∈( 1

3 ,1)

√
(1− u)2(1− 3u)

1− 5u
=

4
√

30

75
(≈ 0.29212). (3.10)

The following lemma gives more properties of θε(u).

Lemma 3.4 ([27]). The function θε(u) defined by (3.9) satisfies the following properties:

(i) θε(0) = 0 and θ′ε(0) = 1− ε2 > 0 for all ε ∈ (0, 1).

(ii) There exists a positive constant ε̄(≈ 0.22793) such that θε (γ(ε)) 6 0 for all ε ∈ (0, ε̄].

(iii) If ε 6 ε̌, then there exist two numbers p1 := p1(ε) and p2 := p2(ε), with 0 < p1 6 γ 6 p2 < 1− ε, such

that

θ′ε(u)


< 0 on (p1, p2);

= 0 if u = p1, p2;

> 0 on [0, p1) ∪ (p2, 1− ε).
(3.11)

Moreover, p1(ε) < γ(ε) < p2(ε) for all ε ∈ (0, ε̌) and p1(ε̌) = γ(ε̌) = p2(ε̌) = 7
15 .

We also need another auxiliary function Hε(u).

Lemma 3.5 ([27]). Let Hε(u) :=
∫ u

0
tθ′ε(t) dt and ε̄, ε̌ be given as above. Then both Hε(p2(ε)) and Hε(γ(ε))

are strictly increasing functions of ε ∈ (0, ε̃), and there exist two constants ε̂, ε̃ with ε̄ < ε̂ < ε̃ < ε̌, such that

Hε̂(γ(ε̂)) = 0 and Hε(γ(ε)) < 0 for all ε < ε̂,

Hε̂(p2(ε̃)) = 0 and Hε(p2(ε)) < 0 for all ε < ε̃,

where ε̂ = sup{ε < ε̌ | Hε(γ(ε)) < 0} and ε̃ = sup{ε < ε̌ | Hε(p2(ε)) < 0} (numerical evaluation shows that

ε̂ ≈ 0.25458 and ε̃ ≈ 0.26262).

Lemma 3.6. Let Tλ(r), γ(ε), and p2(ε) be given as above. Then the following assertions hold:

(i) If 0 < ε < ε̂ and λ < λγ , then Tλ(r) has exactly one critical point on (0, γ) and T ′λ(γ) < 0.

(ii) If 0 < ε < ε̃ and λ < λp2 , then Tλ(r) has at least one critical point on (0, p2) and T ′λ(p2) < 0.

Proof. With the aids of Lemmas 3.4 and 3.5, we obtain the results from inequality (3.8), following the

same line as in the proof of [4, Lemma 3.10(i)(ii)]. So we omit the details.

Next we investigate the behaviors of T ′λ(r) at the right endpoint of Dε,λ.

Lemma 3.7. For any ε ∈ (0, 1), limλ→(λ1−ε)+ T
′
λ

(
F−1

(
1
λ

))
= +∞.

The proof of Lemma 3.7 will be provided after that of Lemma 3.12 below.

Define

G(λ) := T ′λ
(
F−1

( 1

λ

))
for λ > λ1−ε. (3.12)

Then G(λ) is continuous with respect to λ ∈ (λ1−ε,+∞). In the earlier works on exact multiplicity of

positive solutions for (1.1), the nonlinearity f is usually chosen to be a monotonic function. According to
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[12, Proposition 2.10], G(λ) has the opposite monotonicity to f provided that f is a monotonic function.

In the present paper, f is not monotonic, which brings new difficulties and more complexity. On the one

hand, according to the proof of Lemma 3.3(i), G(λ) < 0 for all λ > λa when ε ∈ (0,
√

2
2 ). On the other hand,

limλ→(λ1−ε)+ G(λ) > 0 by Lemma 3.7(ii). So G(λ) changes sign at least once on (λ1−ε,+∞) for ε ∈ (0,
√

2
2 ).

To give the exact number of sign changes of G(λ) on (λ1−ε,+∞), we need the following crucial lemma,

which was proved by using the theory of total positivity. About this theory and the relevant applications,

we refer the reader to [39, 40].

Lemma 3.8 ([14]). Let n be a positive integer. Then the integral operator

(Lnϕ) (µ) =

∫ µ

0

(
µ2 − z2

)n− 1
2 zϕ(z)dz

is variation diminishing provided that ϕ changes sign no more than n times. Precisely, if ϕ has no more

than n changes of sign on R+, then Lnϕ has at most as many sign changes on R+ as ϕ has.

Note that zeros do not count as sign changes, and R+ can be replaced with a finite interval (0, ρ).

The following result can be applied to more general problem (1.1) than (1.2) and hence has independent

interest.

Lemma 3.9. Consider problem (1.1). Suppose f(u) ∈ C2([0, ρ)) and f(u) > 0 on [0, ρ) for some ρ ∈
(0,+∞]. Let G(λ) be defined on ( 1

F (ρ) ,+∞) by (3.12) (here, 1
F (ρ) = 0 if F (ρ) = +∞). Set

ω1(t) := 3f ′(t)f2(t) + F (t)f ′′(t)f(t)− 3F (t)f ′2(t). (3.13)

If ω1(t) changes sign no more than once on (0, ρ), then G(λ) changes sign no more than once on ( 1
F (ρ) ,+∞).

Proof. By (3.5) and (3.12), we have

G(λ) = T ′λ
(
F−1

( 1

λ

))
= T̃ ′(0)

ds

dr
(F−1(

1

λ
)) = −λf(F−1(

1

λ
))

∫ 1

0

y√
1− y2

f ′
(
F−1

(
y
λ

))
λ2
[
f
(
F−1

(
y
λ

))]3 dy,

where s = 1 − λF (r) and y = 1 + λF (u) − λF (r). To apply Lemma 3.8, we take z = y
λ and change G(λ)

into the form

−1

λf(F−1( 1
λ ))

G(λ) =

∫ 1
λ

0

λz√
1− (λz)2

f ′(F−1(z))

λ2[f(F−1(z))]3
λ dz =

∫ 1
λ

0

z√
1− (λz)2

f ′(F−1(z))

f3(F−1(z))
dz.

Taking µ = 1
λ , we further have

−1

f(F−1( 1
λ ))

G(λ) =
−1

f(F−1(µ))
G(

1

µ
) =

∫ µ

0

z√
µ2 − z2

f ′(F−1(z))

f3(F−1(z))
dz =

∫ µ

0

1√
µ2 − z2

zH(z) dz, (3.14)

where

H(z) :=
f ′(F−1(z))

f3(F−1(z))
. (3.15)

Multiplying (3.14) by µ2 and integrating by parts, similar to [14, (2.6)], we have

−1

λ2f(F−1( 1
λ ))

G(λ) =
−µ2

f(F−1(µ))
G(

1

µ
) =

∫ µ

0

µ2√
µ2 − z2

zH(z) dz
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=

∫ µ

0

√
µ2 − z2zH(z) dz +

∫ µ

0

z2√
µ2 − z2

zH(z) dz

=

∫ µ

0

√
µ2 − z2z [3H(z) + zH′(z)] dz.

From (3.15), we obtain that

H′(z) =

(
f ′(F−1(z))

f3(F−1(z))

)′
=
f ′′(F−1(z))f(F−1(z))− 3f ′2(F−1(z))

f5(F−1(z))
.

Set

ϕ(z) := 3H(z) + zH′(z) =
3f ′(F−1(z))f2(F−1(z)) + zf ′′(F−1(z))f(F−1(z))− 3zf ′2(F−1(z))

f5(F−1(z))
.

Since f(u) is positive on [0, ρ), it follows that F is increasing and F−1 is well defined on [0, F (ρ)). Letting

t = F−1(z), we obtain that t ∈ [0, ρ) and

ϕ(t) =
3f ′(t)f2(t) + F (t)f ′′(t)f(t)− 3F (t)f ′2(t)

f5(t)
=:

ω1(t)

f5(t)
,

where ω1 is defined in (3.13). So it is clear that ϕ(t) and ω1(t) have the same number of sign changes on

(0, ρ). If ω1(t) changes sign no more than once on (0, ρ), then so does ϕ(t). Applying Lemma 3.8 to the case

of n = 1, we immediately obtain that G(λ) changes sign no more than once on ( 1
F (ρ) ,+∞).

With the aid of the previous lemma, we next determine the number of the sign changes of G(λ).

Lemma 3.10. Consider problem (1.2). For any ε ∈ (0,
√

2
2 ), G(λ) changes sign exactly once on (λ1−ε,+∞).

That is, there exists a unique λ̄ := sup{λ > 0 | G(λ) > 0} > λ1−ε such that G(λ)


> 0, if λ1−ε < λ < λ̄,

= 0, if λ = λ̄,

< 0, if λ > λ̄.

Proof. By Lemma 3.9 and the analysis below (3.12), it suffices to prove that ω1(u) changes sign at most

once on (0, 1− ε).
Substituting f(u) = 1

(1−u)2 − ε2

(1−u)4 into (3.13) yields that ω1(u) = 1
(1−u)13ψ(u), where ψ is a polynomial

of degree 7 with a parameter ε and is defined by

ψ(u) := (2ε2 − 6)u7 + (−14ε2 + 42)u6 + (− 22
3 ε

4 + 64ε2 − 126)u5 + ( 110
3 ε4 − 180ε2 + 210)u4 +

( 28
3 ε

6 − 304
3 ε4 + 290ε2 − 210)u3 + (−28ε6 + 152ε4 − 262ε2 + 126)u2 + (28ε6 − 110ε4 + 124ε2 −

42)u− 12ε6 + 30ε4 − 24ε2 + 6.

Then ω1(u) and ψ(u) have the same number of sign changes.

Set ψi(u) := ∂i

∂ui (ψ(u)), i = 1, 2, . . . , 7. Successive differentiation yields

ψ1(u) = 7(2ε2 − 6)u6 + 6(−14ε2 + 42)u5 + 5(
−22

3
ε4 + 64ε2 − 126)u4 + 4(

110

3
ε4 − 180ε2 + 210)u3

+3(
28

3
ε6 − 304

3
ε4 + 290ε2 − 210)u2 + 2(−28ε6 + 152ε4 − 262ε2 + 126)u+ 28ε6 − 110ε4 + 124ε2 − 42,

ψ2(u) = 42(2ε2 − 6)u5 + 30(−14ε2 + 42)u4 + 20(
−22

3
ε4 + 64ε2 − 126)u3 + 12(

110

3
ε4 − 180ε2 + 210)u2
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+ 6(
28

3
ε6 − 304

3
ε4 + 290ε2 − 210)u+ 2(−28ε6 + 152ε4 − 262ε2 + 126),

ψ3(u) = 210(2ε2 − 6)u4 + 120(−14ε2 + 42)u3 + 60(
−22

3
ε4 + 64ε2 − 126)u2

+ 24(
110

3
ε4 − 180ε2 + 210)u+ 6(

28

3
ε6 − 304

3
ε4 + 290ε2 − 210),

ψ4(u) = 840(2ε2 − 6)u3 + 360(−14ε2 + 42)u2 + 120(
−22

3
ε4 + 64ε2 − 126)u+ 24(

110

3
ε4 − 180ε2 + 210),

ψ5(u) = 2520(2ε2 − 6)u2 + 720(−14ε2 + 42)u+ 120(
−22

3
ε4 + 64ε2 − 126),

ψ6(u) = 5040(2ε2 − 6)u+ 720(−14ε2 + 42),

ψ7(u) = 5040(2ε2 − 6).

Then for any ε ∈ (0,
√

2
2 ), further computation yields:

(i) Since ψ7(u) < 0 on (0, 1− ε), and ψ6(1− ε) = −10080ε3 + 30240ε > 0, then ψ6(u) > 0 on (0, 1− ε).
(ii) Since ψ6(u) > 0 on (0, 1− ε), and ψ5(1− ε) = 4160ε2(ε2 − 3) < 0, then ψ5(u) < 0 on (0, 1− ε).
(iii) Since ψ5(u) < 0 on (0, 1− ε), and ψ4(1− ε) = −800ε3(ε2 − 3) > 0, then ψ4(u) > 0 on (0, 1− ε).
(iv) Since ψ4(u) > 0 on (0, 1− ε), and ψ3(1− ε) = 36ε4(ε2 − 3) < 0, then ψ3(u) < 0 on (0, 1− ε).
(v) Since ψ2(0) = −56ε6 + 304ε4 − 524ε2 + 252 > −56(

√
2

2 )6 + 304ε4 − 524ε2 + 252 = 304ε4 − 524ε2 + 245 =

304(ε2 − 131
152 )2 + 1459

76 > 0 and ψ2(1 − ε) = 4ε4(5ε3−15ε−8)
3 < 0, combining with (iv), we obtain that ψ2(u)

has exactly one root on (0, 1− ε). That is, ψ1(u) has exactly one local maximum on (0, 1− ε).
(vi) Since ψ1(0) = 2(ε2 − 1)(14ε4 − 41ε2 + 21) = 2(ε2 − 1)[14(ε2 − 41

28 )2 − 505
56 ] < 0 and ψ1(1 − ε) =

16ε5(ε+2)(ε−1)2

3 > 0, combining with (v), we obtain that ψ1(u) has exactly one root on (0, 1 − ε). That is,

ψ(u) has exactly one local minimum on (0, 1− ε).
(vii) Since ψ(0) = −6(2ε2 − 1)(ε− 1)2(ε+ 1)2 > 0 and ψ(1− ε) = −4ε6(ε+ 2)(ε− 1)2 < 0, combining with

(vi), we obtain that ψ(u) has exactly one root on (0, 1 − ε). That is, ψ(u) changes sign exactly once on

(0, 1− ε) for all ε ∈ (0,
√

2
2 ), and so does ω1(u).

We next determine the sign of T ′λ(r) for small λ.

Lemma 3.11. Let ε̌ be the constant given in (3.10). For any ε ∈ [ε̌, 1), there exists a number Λε ∈ (0, λ1−ε)

such that T ′λ(r) > 0 on (0, 1− ε) for all λ < Λε.

Proof. From (3.7), we obtain that

T ′λ(r) =

∫ 1

0

λ3∆F 3 − 3λ2∆F 2 + 2λ∆F − λ∆f

{1− (1− λ∆F )2}3/2
ds >

∫ 1

0

−3λ2∆F 2 + 2λ∆F − λ∆f

{1− (1− λ∆F )2}3/2
ds.

Take a constant c > 3. If λ < 1
cF (1−ε) , then

λ∆F < λF (r) 6 λF (1− ε) < 1

c
for all r ∈ (0, 1− ε], s ∈ (0, 1).

It follows that

−3λ2∆F 2 + 2λ∆F − λ∆f >
−3

c
λ∆F + 2λ∆F − λ∆f = λ[(2− 3

c
)∆F −∆f ]

= λ(b∆F −∆f) = λ[Aε,b(r)−Aε,b(rs)],
15



where b = 2− 3
c ∈ (1, 2) and the auxiliary function Aε,b is defined by

Aε,b(u) := bF (u)− uf(u) =
b

1− u −
u

(1− u)2
− ε2b

3(1− u)3
+

ε2u

(1− u)4
+
ε2b

3
− b. (3.16)

Then

T ′λ(r) >

∫ 1

0

λ[Aε,b(r)−Aε,b(rs)]
{1− (1− λ∆F )2}3/2

ds.

We next prove that for any given ε ∈ [ε̌, 1), there exists bε ∈ (1, 2) such that Aε,b(u) is strictly increasing

on (0, 1− ε]. Differentiating yields that ∂
∂uAε,b(u) = 1

(1−u)5 kε,b(u), where

kε,b(u) := (−b− 1)u3 + (3b+ 1)u2 + (ε2b+ 3ε2 − 3b+ 1)u− ε2b+ ε2 + b− 1.

Since

kε,b(0) = (1− ε2)(b− 1) > 0, kε,b(1− ε) = 2ε2(1− ε) > 0, kε,b(−∞) = +∞, kε,b(+∞) = −∞,

then the Mean Value Theorem implies that kε,b(u) has at most two zeros on (0, 1− ε). Furthermore,

∂kε,b(u)

∂u
= (−3b− 3)u2 + (6b+ 2)u+ ε2b+ 3ε2 − 3b+ 1,

∂kε,b
∂u

(1− ε) = −2ε(εb− 2) > 0,
∂kε,b
∂u

(−∞) = −∞, ∂kε,b
∂u

(+∞) = −∞.

Then ∂
∂ukε,b(u) has exactly one zero zε,b := 3b+1−

√
3ε2b2+12ε2b+9ε2+4

3b+3 on (−∞, 1−ε). This implies that kε,b(u)

has at most one critical point, a local minimum, on (0, 1 − ε). In addition, Aε,b(0) = 0 and Aε,b(1 − ε) =
b(2+ε)(1−ε)2

3ε > 0. So we can sketch possible graphs of kε,b(u) and Aε,b(u), see Fig.8.

0 1−ε

kε,b(u)

u

Aε,b(u)

0 1−ε

u

Figure 8: Left: possible graphs of kε,b(u). Right: possible graphs of Aε,b(u).

Case (i). Suppose zε,b 6 0. Then kε,b(u) > 0 on (0, 1 − ε] and hence Aε,b(u) is strictly increasing on

(0, 1 − ε], which implies that Aε,b(r) − Aε,b(rs) > 0 for all r ∈ (0, 1 − ε] and s ∈ (0, 1). So T ′λ(r) > 0 on

(0, 1− ε).
Case (ii). Suppose zε,b > 0. Then kε,b(u) has exactly one critical point, a local minimum zε,b on (0, 1−ε).

We next investigate the sign of kε,b(zε,b).

We first show that ∂
∂bkε,b(zε,b) > 0 for all ε ∈ (0, 1). Notice that

∂kε,b
∂u (zε,b) = 0. Then

∂

∂b
kε,b(zε,b) =

∂kε,b
∂b

(zε,b) +
∂kε,b
∂u

(zε,b)
∂zε,b
∂b

=
∂kε,b
∂b

(zε,b),
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and computing yields that
∂kε,b
∂b

(u) = −u3 + 3u2 + (ε2 − 3)u+ 1− ε2,

and the three roots of
∂kε,b
∂b (u) are 1, 1 − ε and 1 + ε, which implies that

∂kε,b
∂b (u) > 0 on (0, 1 − ε). So

∂kε,b
∂b (zε,b) > 0. Thus kε,b(zε,b) is a strictly increasing function of b ∈ (1, 2).

If b = 2, there is then Aε,2(u) = 2F (u)−uf(u) = θε(u), by (3.10), we have ∂
∂uAε,2(u) = 1

(1−u)5 kε,2(u) > 0

on (0, 1− ε] for all ε ∈ [ε̌, 1), then

kε,2(zε,2) = min
u∈(0,1−ε)

kε,2(u) > 0 on (0, 1− ε] for all ε ∈ [ε̌, 1). (3.17)

If b = 1, then

kε,1(zε,1) =
4

27
(
√

6ε2 + 1− 2)(
√

6ε2 + 1 + 1− 6ε2) 6 0 for all ε ∈ (0, 1).

So for any given ε ∈ [ε̌, 1), there exists a unique bε ∈ (1, 2) such that kε,b(zε,bε) = 0. Then for any fixed

b ∈ (bε, 2), kε,b(u) > kε,b(zε,b) > 0. So Aε,b(u) is strictly increasing on (0, 1−ε), which implies that T ′λ(r) > 0

on (0, 1 − ε). Notice that c = 3
2−b and λ < 1

cF (1−ε) . Then b ∈ (bε, 2) is equivalent to λ ∈ (0, 2−bε
3F (1−ε) ). We

denote Λε := 2−bε
3F (1−ε) , then T ′λ(r) > 0 on (0, 1− ε) for all λ < Λε.

For all ε ∈ (0, 1), denote by g(λ) the value of Tλ(r) at the right endpoint of the domain Dε,λ, i.e.,

g(λ) := Tλ(F−1(
1

λ
)) =

∫ F−1( 1
λ )

0

λF (u)√
1− [λF (u)]2

du for λ > λ1−ε. (3.18)

It is clear that g(λ) is continuous on (λ1−ε,+∞). Furthermore, the smoothness of Tλ with respect to r and

λ, together with the smoothness of f , implies that g is smooth with respect to λ ∈ (λ1−ε,∞).

We next give some properties of g(λ) for (1.2).

Lemma 3.12. For any ε ∈ (0, 1), the following assertions hold:

(i) limλ→+∞ g(λ) = 0. (ii) limλ→(λ1−ε)+ g(λ) = +∞.

Proof. (i) limλ→0 g(λ) = limλ→0 Tλ(1 − ε) = +∞ directly follows from Lemma 3.1(i). If λ → +∞, then

λ > λ1−ε and g(λ) = Tλ(F−1( 1
λ )). Since

lim
u→0

F (u)

f(u)
= lim
u→0

(1− u)3 − ε2

3 (1− u) + ( ε
2

3 − 1)(1− u)4

(1− u)2 − ε2
= 0,

by [12, Proposition 2.9], we obtain that limλ→+∞ g(λ) = 0.

(ii) For ε ∈ (0, 1) and f(u) = 1
(1−u)2 − ε2

(1−u)4 , it is clear that 0 < limu→(1−ε)−
f(u)

1−ε−u = 2
ε3 < +∞. So

there exist positive values R < 1− ε and k such that f(u) 6 k(1− ε− u) for R < u < 1− ε. It follows that

F (r)− F (u) =

∫ r

u

f(v) dv 6
∫ r

u

k(1− ε− v) dv = k(1− ε)(r − u)− 1

2
k(r2 − u2). (3.19)

By writing λ = 1
F (r) in (3.19), we have

g̃(r) := g(λ)|λ= 1
F (r)

=

∫ r

0

F (u)√
F 2(r)− F 2(u)

du

17



r

0

rf(r)

r̄ rρ 1−ε

Figure 9: Graph of rf(r) on (0, 1− ε) with fixed ε ∈ (0, 1) and definition of r̄.

and hence

lim
λ→(λ1−ε)+

g(λ) = lim
r→(1−ε)−

g̃(r) = lim
r→(1−ε)−

∫ r

0

F (u)√
F 2(r)− F 2(u)

du

> lim
r→(1−ε)−

∫ r

R

F (u)√
F (r) + F (u)

· 1√
F (r)− F (u)

du

> lim
r→(1−ε)−

F (R)√
2F (r)

∫ r

R

1√
F (r)− F (u)

du.

Then it follows from (3.19) that

lim
r→(1−ε)−

g̃(r) >− F (R)√
kF (1− ε)

· lim
r→(1−ε)−

∫ r

R

1√
(1− ε− u)2 − (1− ε− r)2

d(1− ε− u)

= − F (R)√
kF (1− ε)

· lim
r→(1−ε)−

ln(1− ε− u+
√

(1− ε− u)2 − (1− ε− r)2)
∣∣r
R

= +∞, (3.20)

which completes the proof.

Proof of Lemma 3.7. For f(r) = 1
(1−r)2 − ε2

(1−r)4 with ε ∈ (0, 1), differentiating rf(r) yields

(rf(r))′ =
r3 − r2 − (3ε2 + 1)r − ε2 + 1

(1− r)5
=:

w(r)

(1− r)5
.

Since w(0) = 1− ε2 > 0, w(1− ε) = 2ε2(ε− 1) < 0 and limr→±∞ w(r) = ±∞, we have that w has a unique

zero ρ := ρ(ε) ∈ (0, 1 − ε). So rf(r) is strictly increasing on (0, ρ) and decreasing on (ρ, 1 − ε). Then for

each r > ρ, there exists a unique value r̄ := r̄(ε, r) < ρ such that

uf(u)− rf(r) =


< 0 if u ∈ (0, r̄)

= 0 if u = r̄

> 0 if u ∈ (r̄, r)

; (3.21)

see Fig.9. Moreover, r̄ → 0 as r → 1− ε.
From (3.19), we have

T ′λ(r) = I1(r) + I2(r) + I3(r),

18



where

I1(r) :=
1

r

∫ r

0

1 + λF (u)− λF (r)√
1− [1 + λF (u)− λF (r)]2

du,

I2(r) :=
1

r

∫ r̄

0

λ[uf(u)− rf(r)]

{1− [1 + λF (u)− λF (r)]2}3/2
du,

I3(r) :=
1

r

∫ r

r̄

λ[uf(u)− rf(r)]

{1− [1 + λF (u)− λF (r)]2}3/2
du.

In view of (3.21), it is clear that I2(r) < 0 and I3(r) > 0 for r ∈ (ρ, 1− ε). Then

lim inf
λ→(λ1−ε)+

T ′λ
(
F−1

( 1

λ

))
> lim inf
λ→(λ1−ε)+

[
I1(F−1(

1

λ
)) + I2(F−1(

1

λ
))
]
. (3.22)

It follows from (3.20) that

lim
λ→(λ1−ε)+

I1(F−1(
1

λ
)) = lim

λ→(λ1−ε)+

1

F−1( 1
λ )
g(λ)

r=F−1( 1
λ )

======== lim
r→(1−ε)−

1

r
g̃(r)

=
1

1− ε lim
r→(1−ε)−

g̃(r) = +∞. (3.23)

Computing yields

I2(F−1(
1

λ
)) =

1

F−1( 1
λ )

∫ F−1( 1
λ )

0

λ[uf(u)− F−1( 1
λ )f(F−1( 1

λ ))]

{1− [λF (u)]2}3/2
du− I3(F−1(

1

λ
))

r=F−1( 1
λ )

========
1

r

(∫ r

0

−
∫ r

r̄

) uf(u)− rf(r)

F (r)
{

1− [F (u)
F (r) ]2

}3/2
du

=
F 2(r)

r

∫ r̄

0

uf(u)− rf(r)

[F 2(r)− F 2(u)]3/2
du.

Since f(1− ε) = 0 and F (1− ε) > 0, and by (3.21), we have that

0 >

∫ r̄

0

uf(u)− rf(r)

[F 2(r)− F 2(u)]3/2
du >

∫ r̄

0

−rf(r)

[F 2(r)− F 2(r̄)]3/2
du =

−r̄rf(r)

[F 2(r)− F 2(r̄)]3/2
→ 0,

as r → (1− ε)−. Hence,

lim
λ→(λ1−ε)+

I2(F−1(
1

λ
)) =

F 2(1− ε)
1− ε lim

r→(1−ε)−

∫ r̄

0

uf(u)− rf(r)

[F 2(r)− F 2(u)]3/2
du = 0. (3.24)

Consequently, (3.22)–(3.24) imply that limλ→(λ1−ε)+ T
′
λ

(
F−1

(
1
λ

))
= +∞.

Lemma 3.13. For any ε ∈ [ 19
100 , 1), g(λ) is strictly decreasing on (λ1−ε,+∞).

Proof. For λ > λ1−ε, according to [12, Proposition 2.8], differentiating (3.18) yields

g′(λ) =
d

dλ

[
Tλ
(
F−1

( 1

λ

))]
= − 1

λ2

∫ 1

0

y√
1− y2

f2(t)− f ′(t)F (t)

f3(t)

∣∣∣
t=F−1( yλ )

dy. (3.25)

Set q(u) := (1− u)8[f2(u)− f ′(u)F (u)]. Inserting f into q yields

q(u) = (
2ε2

3
− 2)u5 + (9− 10ε2

3
)u4 + (−16− 4

3
ε4 +

32

3
ε2)u3

+ (4ε4 − 16ε2 + 14)u2 + (−4ε4 + 10ε2 − 6)u+ ε4 − 2ε2 + 1.

(3.26)
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So it suffices to prove that

q(u) > 0, on (0, 1− ε) for all ε ∈ [
19

100
, 1). (3.27)

By Sturm’s Theorem, after a long calculation it can be shown that (3.27) holds, which implies g′(λ) < 0

on (λ1−ε,+∞). Since the proof of (3.27) is lengthy and tedious, we place it in Appendix.

Lemma 3.14. For any ε ∈ (0, 19
100 ), g′(λ) < 0 on [λ1/2,+∞).

Proof. In view of (3.25) and (3.26), we first prove that q(u) > 0 on (0, 1
2 ) for all ε ∈ (0, 19

100 ). Set

qi(u) := ∂i

∂ui (q(u)). For ε ∈ (0, 19
100 ), we obtain from (3.26) that

(i) q5(u) = 80ε2 − 240 < 0 on (0, 1 − ε) and q4(0) = −80ε2 + 216 > 0, then q4(u) has at most one zero on

(0, 1− ε).
(ii) Since q4(u) has at most one zero, q3(0) = −8(ε2 − 6)(ε2 − 2) < 0 and q3(1− ε) = 8ε(4ε3 − 12ε+ 3) > 0,

then q3(u) has exactly one zero on (0, 1− ε).
(iii) Since q3(u) has exactly one zero, q2(0) = 8ε4 − 32ε2 + 28 > 0 and q2(1− ε) = −4ε2

3 (4ε3 − 12ε+ 5) < 0,

then q2(u) has exactly one zero on (0, 1− ε).
(iv) Since q2(u) has exactly one zero, q1(0) = 2(1− ε2)(2ε2− 3) < 0 and q1(1− ε) = −2ε3

3 (ε+ 2)(ε− 1)2 < 0,

then q1(u) has at most two zero on (0, 1− ε).
Also, computing yields that

q1(
1

2
) = −ε4 +

13

24
ε2 − 1

8
< 0 and q1(

13

20
) =

7

100
(−7ε4 − 2377

480
ε2 +

49

160
) > 0 for ε ∈ (0,

19

100
),

which, together with (iv), imply that q1(u) < 0 on (0, 1
2 ). Since

q(
1

2
) = −1

6
ε4 +

7

48
ε2 =

1

6
ε2(

7

8
− ε2) > 0 for ε ∈ (0,

19

100
),

it follows that q(u) > 0 on (0, 1
2 ) for all ε ∈ (0, 19

100 ), which implies that

f2(u)− f ′(u)F (u) > 0, on (0,
1

2
). (3.28)

Since

t = F−1
( y
λ

)
∈
(

0, F−1
( 1

λ

))
⊂
(

0, F−1
(
F (

1

2

)))
=
(
0,

1

2

)
for all λ ∈ [λ1/2,+∞) and y ∈ (0, 1),

it follows from (3.25) and (3.28) that g′(λ) < 0 for all λ ∈ [λ1/2,+∞).

Lemma 3.15. There exists a positive constant ε∗(≈ 0.13123) such that g′(λγ) > 0 for all ε ∈ (0, ε∗].

Proof. Substituting γ(ε) = 1−
√

30
3 ε into (3.26) yields

q(γ) = −80

81
ε4
(√

30(ε3 − 3ε) +
207

80

)
< 0 for ε ∈ (0, ε0),

where ε0(≈ 0.158805) is the first positive root of polynomial
√

30(ε3 − 3ε) + 207
80 . The proof of Lemma 3.14

shows that for ε ∈ (0, ε0), q(u) has at most two critical points on (0, 1−ε). Notice that q(0) = (ε2−1)2 > 0,
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q(1− ε) = 2ε4(ε+2)(ε−1)2

3 > 0. Since γ(ε) > 1
2 and q(γ) < 0, it follows that there exists a unique ξ := ξ(ε) ∈(

1
2 , γ(ε)

)
such that

f2(u)− f(u)F (u) =
1

(1− u)8
q(u)

{
> 0 for u ∈ (0, ξ),

< 0 for u ∈ (ξ, γ).

Substituting λ = λγ into (3.25), we obtain that

− 1

λγ
g′(λγ) = −F (γ)g′(

1

F (γ)
) =

∫ γ

0

F (t)√
F 2(γ)− F 2(t)

f2(t)− f ′(t)F (t)

f2(t)
dt

<

∫ ξ

0

F (t)√
F 2(γ)− F 2(ξ)

f2(t)− f ′(t)F (t)

f2(t)
dt+

∫ γ

ξ

F (t)√
F 2(γ)− F 2(ξ)

f2(t)− f ′(t)F (t)

f2(t)
dt

=
1√

F 2(γ)− F 2(ξ)

(∫ γ

0

F (t)
f2(t)− f ′(t)F (t)

f2(t)
dt

)
=

1√
F 2(γ)− F 2(ξ)

F 2(y)− f(y)
∫ y

0
F (t)dt

f(y)

∣∣∣∣γ
0

. (3.29)

Further computation yields
F 2(γ)− f(γ)

∫ γ
0
F (t)dt

f(γ)
=

φ(ε)

18000ε2f(γ)
,

where

φ(ε) := 2000ε6 + 1500
√

30ε3 − 12000ε4 − 4500
√

30ε+ 16110ε2 + 3780 ln(

√
30ε

3
) + 8343.

Since limε→0+ φ(ε) = −∞ and φ(ε0)(≈ 180.45) > 0, then φ(ε) has at least one zero on (0, ε0). Denote by

ε∗ the first zero of φ(ε) on (0, ε0). Thus
F 2(y)−f(y)

∫ y
0
F (t)dt

f(y)

∣∣
y=γ

6 0 for all ε ∈ (0, ε∗]. Numerical evaluation

shows that ε∗ ≈ 0.13123. Since F (0) = 0, we obtain from (3.29) that g′(λγ) > 0 for all ε ∈ (0, ε∗].

Lemma 3.16. For any ε ∈ (0, 19
100 ), g′(λ) changes sign at most twice on (λ1−ε,+∞). Moreover, for any

ε ∈ (0, ε∗], g′(λ) changes sign exactly twice on (λ1−ε,+∞).

Proof. By Lemmas 3.12, 3.14 and 3.15, we immediately obtain that g′(λ) changes sign at least twice on

(λ1−ε,+∞) for ε ∈ (0, ε∗]. So it suffices to prove that g′(λ) changes sign at most twice on (λ1−ε,+∞) for

ε ∈ (0, 0.19). To this end, consider the function

ω2(u) := 15f6(u)− 33F (u)f4(u)f ′(u) + 36F 2(u)f2(u)f ′
2
(u)− 12F 2(u)f3(u)f ′′(u)

− 15F 3(u)f ′
3
(u) + 10F 3(u)f(u)f ′(u)f ′′(u)− F 3(u)f2(u)f ′′′(u). (3.30)

According to [14, Corollary 2.8], it suffices to prove that ω2(u) changes sign at most twice on (0, 1− ε) for

all ε ∈ (0, 0.19).

Substituting f into (3.30) yields that ω2(u) = 1
9(1−u)24 p(u), where p is a polynomial of degree 15 with a

parameter ε and is defined by

p(u) := (8 ε6 − 72 ε4 + 216 ε2 − 216)u15 + (−120 ε6 + 1080 ε4 − 3240 ε2 + 3240)u14 + (1224 ε6 −
8712 ε4 + 23814 ε2− 128 ε8

3 −22626)u13 + (−8632 ε6 + 47736 ε4−113022 ε2 + 1664 ε8

3 + 97551)u12 +
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(88 ε10−4120 ε8+43248 ε6−190404 ε4+382968 ε2−290304)u11+( 62792 ε8

3 −160080 ε6+570780 ε4−
969192 ε2 − 968 ε10 + 631422)u10 + (− 230240 ε8

3 + 448268 ε6 − 1308744 ε4 + 1871910 ε2 − 280 ε12

3 +

5680 ε10− 1036530)u9 + (840 ε12− 21912 a10 + 207984 ε8− 958788 ε6 + 2313225 ε4− 2786238 ε2 +

1307097)u8+(−3360 ε12+57936 ε10−419064 ε8+1566672 ε6−3151656 ε4+3203064 ε2−1275912)u7+

(7896 ε12−106848 ε10+625824 ε8−1942608 ε6+3287484 ε4−2831976 ε2+963468)u6+(−12096 ε12+

138942 ε10−686610 ε8+1802952 ε6−2589408 ε4+1903986 ε2−557766)u5+(12600 ε12−127350 ε10+

543969 ε8−1223928 ε6+1505214 ε4−953370 ε2+242865)u4+(−8964 ε12+80784 ε10−301104 ε8+

585144 ε6 − 622188 ε4 + 343224 ε2 − 76896)u3 + (4212 ε12 − 33696 ε10 + 109350 ε8 − 184680 ε6 +

171720 ε4−83592 ε2+16686)u2+(−1188 ε12+8154 ε10−22950 ε8+34020 ε6−28080 ε4+12258 ε2−
2214)u+ 135 ε12 − 810 ε10 + 2025 ε8 − 2700 ε6 + 2025 ε4 − 810 ε2 + 135.

Clearly, ω2(u) and p(u) have the same number of sign changes. By Sturm’s Theorem, after a long calculation

it can be shown that

p(u) changes sign at most twice on (0, 1− ε) for all ε ∈ (0, 0.19), (3.31)

which completes the proof. Since the proof of (3.31) is lengthy and tedious, we place it in Appendix.

The next lemma shows that 1− ε does not belong to the domain of Tλ for all λ 6 λ1−ε.

Lemma 3.17. For any ε ∈ (0, 1), the following assertions hold:

(i) limr→(1−ε)− Tλ(r) = +∞ for all λ 6 λ1−ε. (ii) limλ→(λ1−ε)+ h(λ) = +∞.

Proof. For fixed r ∈ (0, 1− ε), since Tλ(r) is strictly decreasing with respect to λ ∈ (0, λr], it follows that

Tλ(r) > Tλ1−ε(r) for all λ ∈ (0, λ1−ε).

So it suffices to prove that limr→(1−ε)− Tλ1−ε(r) = +∞.

Take the transformation r = F−1( 1
λ ) for λ > λ1−ε; see Fig.7. Since r → (1 − ε)− as λ → (λ1−ε)+, it

follows that

lim
r→(1−ε)−

Tλ1−ε(r) = lim
λ→(λ1−ε)+

Tλ1−ε(F
−1(

1

λ
)).

Since Tλ(r) is strictly decreasing with respect to λ ∈ (0, λr], it follows that

Tλ1−ε(F
−1(

1

λ
)) > Tλ(F−1(

1

λ
)).

So

lim
λ→(λ1−ε)+

Tλ1−ε(F
−1(

1

λ
)) > lim

λ→(λ1−ε)+
Tλ(F−1(

1

λ
)).

For λ > λ1−ε, it follows from Lemma 3.12 that

lim
λ→(λ1−ε)+

Tλ(F−1(
1

λ
)) ≡ lim

λ→(λ1−ε)+
g(λ) = +∞,

which proves (i). (ii) is a direct result of (i).

Lemma 3.18. For any ε ∈ (0, 1), there exists a number σε ∈ (0, 1− ε), such that, for λ 6 λσε , T ′′λ (r) > 0

on [σε, 1− ε) ∩ Dε,λ.
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Proof. Similar to (3.7), by a direct computation, we have

T ′′λ (r) =

∫ 1

0

λ
{

2[f(rs)s−f(r)]+r
[
f ′(rs)s2−f ′(r)

]} {
1− [1 + λF (rs)− λF (r)]2

}
{1−[1+λF (rs)−λF (r)]2}5/2

ds

+

∫ 1

0

3λ2r[1 + λF (rs)− λF (r)][f(rs)s− f(r)]2

{1− [1 + λF (rs)− λF (r)]2}5/2
ds

=
λ2

r

∫ 1

0

−(∆f ′ + 2∆f)(2− λ∆F )∆F + 3(1− λ∆F )(∆f)2

[1− (1− λ∆F )2]5/2
ds, (3.32)

where ∆f := rf(r)− rsf(rs), ∆f ′ := r2f ′(r)− r2s2f ′(rs), and ∆F := F (r)− F (rs). Since

∆F > 0 for u ∈ (0, r) and 1− λ∆F > 0 on Dε,λ,

we have that T ′′λ (r) > 0 holds if ∆f ′ + 2∆f < 0 for all s ∈ (0, 1).

For any ε ∈ (0, 1), set

η(r) := r2f ′(r) + 2rf(r) =
2r

(1− r)5

[
r2 − (ε2 + 2)r − ε2 + 1

]
.

Differentiating η yields

η′(r) =
2

(1− r)6

[
2r3 − (3ε2 + 3)r2 − 6ε2r − ε2 + 1

]
.

Then `(r) := 2r3 − (3ε2 + 3)r2 − 6ε2r − ε2 + 1 has at most three real zeros. Furthermore,

`(±∞) = ±∞, `(0) = 1− ε2 > 0, and `(1− ε) = ε2(1− ε)(3ε− 7) < 0.

So `(r) has exactly one zero on (0, 1− ε), denoted by σε. Since `(r) < 0 on (σε, 1− ε), it implies that η(r)

is strictly decreasing on (σε, 1− ε). Hence, for any s ∈ (0, 1), λ > 0 and r ∈ (σε, 1− ε) ∩ Dε,λ, we have

∆f ′ + 2∆f = r2f ′(r)− r2s2f ′(rs) + 2rf(r)− 2rsf(rs) = η(r)− η(rs) < 0.

It follows from (3.32) that T ′′λ (r) > 0 on [σε, 1− ε) ∩ Dε,λ, which is not empty for any λ 6 λσε .

4. Proofs of main results

From (3.4) and uniqueness of solutions of the initial value problem, we obtain that for any fixed λ > 0

and ε ∈ (0, 1), the exact number of positive solutions of (1.2) is equal to that of the root of the equation

Tλ(r) = L in Dε,λ.

By the definitions and the lemmas, we have actually established the following properties of the time-map:

(1) For any ε ∈ (0, 1), λ > 0, the domain of Tλ(r) is Dε,λ =

{ (
0, F−1

(
1
λ

)]
if λ > λ1−ε

(0, 1− ε) if λ 6 λ1−ε
. Moreover, Tλ(r)

is twice continuously differentiable with respect to (r, λ) ∈ Dε,λ × (0, λr].

(2) For any given r ∈ (0, 1−ε), Tλ(r) is a strictly decreasing function of λ ∈ (0, λr] and limλ→0 Tλ(r) = +∞.

(3) limr→0+ Tλ(r) = 0 and limr→0+ T ′λ(r) = +∞ for any λ > 0; limr→(1−ε)− Tλ(r) = +∞ for all λ ∈
(0, λ1−ε].
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Figure 10: (i) Case A. g̃(r) is strictly increasing on (0, 1−ε). (ii) Case B. g̃(r) has exactly two critical points, a pair of maximum

and minimum points, on (0, 1− ε). (iii) The domain Dε,λ and the transformation r = F−1( 1
λ

).

(4) g(λ) := Tλ(F−1( 1
λ )) is a continuous function of λ ∈ (λ1−ε,∞), satisfying limλ→(λ1−ε)+ g(λ) = +∞ and

limλ→+∞ g(λ) = 0.

(5) h(λ) := supr∈(0,F−1(1/λ)] Tλ(r) is a strictly decreasing, continuous function of λ ∈ (λ1−ε,∞), satisfying

that limλ→(λ1−ε)+ h(λ) = +∞ and limλ→+∞ h(λ) = 0.

(6) If ε ∈ (0,
√

2
2 ), then there exists a unique λ̄ > λ1−ε such that

G(λ) := T ′(F−1(
1

λ
))


> 0 if λ1−ε < λ < λ̄

= 0 if λ = λ̄

< 0 if λ > λ̄

.

If ε ∈ [
√

2
2 , 1), then T ′λ(r) > 0 on Dε,λ for all λ > 0.

(7) For any ε ∈ (0, 1), g(λ) either is strictly decreasing or has exactly two critical points, a pair of maximum

and minimum points, on (λ1−ε,+∞). In particular, if ε ∈ [ 19
100 , 1), then the former occurs; if ε ∈ (0, 13

100 ],

then the latter happens.

Proof of Theorem 2.1. From (4) and (7) above, it follows that there are only two possible shapes for g

on (λ1−ε,∞). By the transformation r = F−1( 1
λ ), the same situation holds for g̃(r) := g( 1

F (r) ) on (0, 1− ε);
see Fig.10(i) and (ii). So we divide the proof into two cases.

Case A. Assume that g̃(r) is strictly increasing on (0, 1− ε); see Fig.10(i) and (iii). Then for any given

L > 0, (4) implies that there exists a unique r∗ := F−1( 1
λ∗

), with λ∗ > λ1−ε, such that g̃(r∗) = g(λ∗) =

Tλ∗(r∗) = L.

For given L > 0 and any r0 ∈ (0, r∗), it follows from (2) that there exists a unique λ ∈ (0, λ∗), denoted

by λL(r0) or λr0 for short, such that TλL(r0)(r0) = L. In fact, if Tλ(r0) > L for all λ ∈ (0, λr0), then it

contradicts the following relation:

lim
λ→λr0

Tλ(r0) = Tλr0 (r0) = g̃(r0) < g̃(r∗) = L.

Thus, we define a function λL(r) of r ∈ (0, r∗].

24



We claim that for any r1 ∈ (r∗, 1 − ε), the equation Tλ(r1) = L has no solution. Indeed, since (0, r1] ⊂
(0, F−1( 1

λ )] for all λ < λr1 , Tλ(r1) makes sense only for λ < λr1 . However, for any λ < λr1 , we have

Tλ(r1) > Tλr1 (r1) = g̃(r1) > g̃(r∗) = L,

which implies that there does not exist λ > 0 such that Tλ(r1) = L. The claim is true.

By the smoothness and monotonicity of Tλ in (1) and (2), using the implicit function theorem at each

r0 ∈ (0, r∗) yields that λL(r) ∈ C1(0, r∗). By the definition of Cε, we have

Cε = {(λ, r) | Tλ(r) = L for r ∈ Dε,λ}
= {(λL(r), r) | r ∈ (0, r∗], where r∗ satisfies that g̃(r∗) = L} ,

then Cε is continuously differentiable in the (λ, ‖u‖∞)-plane. Since r∗ = F−1( 1
λ∗

) < 1− ε, Cε will not end at

the horizontal line ‖u‖∞ = 1− ε but rather at some point (λ∗, r∗) on the derivative blow-up curve defined

by {(λ, r) | λF (r) = 1 and λ > λ1−ε} in the (λ, ‖u‖∞)-plane.

Case B. Assume that g̃(r) possesses precisely two critical points, a pair of maximum and minimum

points, on (λ1−ε,+∞). Denote by gm and gM the local minimum and maximum values, respectively; see

Fig.10(ii) and (iii).

Since the proofs dealing with the monotone segments of g̃ resemble that presented in Case A, we next

only focus on analyzing the part where L ∈ [gm, gM ]. Then for such L, there exist three positive numbers

λr1 > λr2 > λ∗ > λ1−ε, with at least one of ‘>’ being strict, such that

g(λr1) = g(λr2) = g(λ∗) = L, i.e., g̃(r1) = g̃(r2) = g̃(r∗) = L.

According to the transformation r = F−1( 1
λ ), it is clear that r1 6 r2 6 r∗ < 1− ε and at least one of ‘6’ is

strict.

By the same argument as in Case A, we obtain that for any r ∈ (0, r1] ∪ [r2, r∗], there exists a unique

λL(r) > 0 such that TλL(r)(r) = L; for r ∈ (r∗, 1 − ε), the equation TλL(r)(r) = L has no solution.

Furthermore, for any r0 ∈ (r1, r2), the equation Tλ(r0) = L also has no solution for λ ∈ (0, λr0). Indeed, it

follows from the inequality relation:

Tλ(r0) > Tλr0 (r0) = g̃(r0) > g̃(r1) = g̃(r2) = L.

Similarly, by the implicit function theorem, we obtain that the function λL(r) ∈ C1{(0, r1) ∪ (r2, r∗)} and

Cε = {(λL(r), r) | r ∈ (0, r1] ∪ [r2, r∗] with r1, r2 and r∗ satisfying g̃(r1) = g̃(r2) = g̃(r∗) = L} .

Since at least one of ‘6’ is strict in the expression r1 6 r2 6 r∗ < 1 − ε, it is clear that Cε consists of

two disjoint path-connected components. Clearly, Cε ends at the points (λ1, r1), (λ2, r2), and (λ∗, r∗) on the

derivative blow-up curve.

Next, we prove that limr→0 λL(r) = 0. It suffices to show that for any given L > 0, lim supr→0 λL(r) 6 0.

Otherwise, there exists a number s > 0 such that lim supr→0 λL(r) > s. Furthermore, there exists a sequence

{rn} → 0 satisfying that λL(rn) > s and TλL(rn)(rn) = L. Since Tλ(r) is strictly decreasing with respect to

λ ∈ (0, λr), it follows from (3) that

L = lim
n→∞

TλL(rn)(rn) 6 lim
n→∞

Ts(rn) = 0,
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which is a contradiction. So 0 6 lim infr→0 λL(r) 6 lim supr→0 λL(r) 6 0.

Finally, the curve Cε is bounded. Indeed, for any {(λn, rn)} ⊂ Cε ⊂ (0, λr] × Dε,λ, if λn → +∞, then

rn → 0, contradicting the fact limn→∞ λn = limrn→0 λL(rn) = 0.

Proof of Theorem 2.2. For
√

2
2 6 ε < 1, by Lemmas 3.1, 3.2, 3.7, 3.12, 3.13 and 3.17, we obtain the

properties (1)–(5)(7) mentioned above and the following

(6)′ For any fixed λ > 0, Tλ(r) is strictly increasing with respect to r ∈ Dε,λ.

See Fig.11(i). Then for any L > 0, by the above properties, there exists a unique λ∗ > 0 such that

g(λ∗) = L. Thus by (3.4) and properties (1)–(5)(6)′(7), we immediately obtain the results in Theorem

2.2. The bifurcation curve Cε is depicted in Fig.3.

Proof of Theorem 2.3. For
√

30
10 6 ε <

√
2

2 , in addition to (1)–(7) above, the following properties are

given by Lemmas 3.3 and 3.11:

(8) G(λ) < 0 and Tλ(r) has at least one critical point, a maximum point, in
(
0, F−1

(
1
λ

))
for all λ > λa,

with a = 1−
√

2ε > 0.

(9) T ′λ(r) > 0 on Dε,λ for all λ < Λε for some Λε > 0.

Set ξ := sup{% |Tλ(r) is strictly increasing in Dε,λ for all λ < %}. By (6), (8) and (9), it is clear that

Λε 6 ξ 6 λ̄ < λa. Take σε as in Lemma 3.18 and define

L̄ := g(λ̄), ¯̄λ := min{ξ, λσε}, and ¯̄L := T¯̄λ(σε); (4.1)

see Fig.11(ii). Then σε ∈ (0, F−1(1/¯̄λ)] and L̄ 6 ¯̄L.
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Figure 11: Possible graphs of the time-map Tλ(r) with varying λ > 0. (i)
√

2
2

6 ε < 1. (ii)
√
30
10

6 ε <
√
2

2
. (iii) ε̌ 6 ε <

√
30

10
.

The numbers λ∗ 6 λ∗ and λ̄ satisfy that g(λ∗) = L = h(λ∗) and G(λ̄) = 0, respectively. σε and λ̄ are given in Lemma 3.18

and (6), respectively. ¯̄λ, L̄ and ¯̄L are defined in (4.1).

For any L > 0, by (4) and (7) for g, there exists a unique λ∗ > 0 such that g(λ∗) = L. Furthermore, if

L ∈ (0, L̄], by (3) or (5), there exists a unique λ∗(> λ∗) such that h(λ∗) = L. If L ∈ [ ¯̄L,+∞), the equation

Tλ(r) = L has no solution when λ > λ∗ and exactly one solution when λ < ¯̄λ because of monotonicity of Tλ

on Dε,λ.
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For L ∈ [ ¯̄L,+∞) and ¯̄λ 6 λ 6 λ∗, we claim that the equation Tλ(r) = L has exactly one solution on

(σε, 1 − ε) ∩ Dε,λ. Indeed, if there exist λ0 > ¯̄λ and r0 > σε such that Tλ0
(r0) = L and T ′λ0

(r0) 6 0, since

T ′′λ (r) > 0 on [σε, 1− ε) ∩ Dε,λ, then T ′λ0
(r) < 0 on (σε, r0). It indicates that

Tλ0(σε) > Tλ0(r0) = L > ¯̄L = T¯̄λ(σε),

which contradicts the strict monotonicity of Tλ with respect to λ in (2). The claim is true. Consequently,

we obtain the assertions (i)–(iv). The curve Cε is depicted in Fig.4.

Proof of Theorem 2.4. For ε̌ 6 ε <
√

30
10 , by Lemmas 3.1, 3.3, 3.7, 3.10–3.13, 3.17 and 3.18, we obtain

the properties (1)–(7)(9) mentioned above and the following

(8)′ Tλ(r) has exactly one critical point, a local maximum, on
(
0, F−1

(
1
λ

)]
for all λ > λγ .

See Fig.11(iii). Let L̄, ¯̄λ, and ¯̄L be defined as in (4.1) and Lγ = g(λγ). Notice that Lγ < L̄ < ¯̄L. Then for

any L > 0, by the above properties, there exists a unique λ∗ > 0 such that g(λ∗) = L. Moreover, for any

L ∈ (0, Lγ ], there exists a unique λ∗(> λγ) such that Tλ∗(r) has a unique local maximum maxr∈Dε,λ Tλ∗(r) =

h(λ∗) = L. For any L ∈ (Lγ , L̄], there exists a unique λ∗(> λ∗) such that h(λ∗) = L. For any L ∈ [ ¯̄L,+∞),

Tλ(r) is strictly increasing on Dε,λ. Thus by (3.4) and properties (1)–(7)(8)′(9), we immediately obtain

the results in Theorem 2.4(i)–(iv). The bifurcation curve Cε is depicted in Fig.4(B).
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Figure 12: Possible graphs of Tλ(r) with varying λ > 0. (i) ε̃ 6 ε < ε̌(= 4
√
30

75
). (ii) 19

100
6 ε < ε̃(≈ 0.26262).

Proof of Theorem 2.5. For ε̃ 6 ε < ε̌(= 4
√

30
75 ), by Lemmas 3.1, 3.3, 3.7, 3.10, 3.12, 3.13 and 3.17, we

obtain the properties (1)–(7)(8)′ mentioned above. See Fig.12(i). Let Lγ = g(λγ) and L̄ = g(λ̄). Then for

any L > 0, by the above properties, there exists a unique λ∗ > 0 such that g(λ∗) = L. Moreover, for any

L ∈ (0, Lγ ], there exists a unique λ∗(> λγ) such that Tλ∗(r) has a unique local maximum maxr∈Dε,λ Tλ∗(r) =

h(λ∗) = L. For any L ∈ (Lγ , L̄], there exists a unique λ∗(> λ∗) such that h(λ∗) = L. Thus by (3.4) and

properties (1)–(7)(8)′, we immediately obtain the results in Theorem 2.5(i)–(iv). The bifurcation curve Cε
is depicted in Fig.4(C).
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Proof of Theorem 2.6. For 19
100 6 ε < ε̃(≈ 0.26262), by Lemmas 3.1, 3.3, 3.6, 3.7, 3.10, 3.12, 3.13 and

3.17, we obtain the properties (1)–(7)(8)′ mentioned above and the following

(9)′ Tλ(r) has at least one critical point on (0, p2) for λ < λp2 , where p2 is defined in Lemma 3.4.

See Fig.12(ii). Let Lγ := g(λγ) and L̄ = g(λ̄). By the above properties, for any L > 0, there exists a unique

λ∗ > 0 such that g(λ∗) = L. Moreover, we have:

(i) For any L ∈ (0, Lγ ], there exists a unique λ∗(> λγ) such that Tλ∗(r) has a unique local maximum

maxr∈Dε,λ Tλ∗(r) = h(λ∗) = L.

(ii) For any L ∈ (Lγ , L̄], there exists a unique λ∗(> λ∗) such that h(λ∗) = L.

(iii) For any L ∈ (L̄,+∞), there exists a unique λ∗ such that h(λ∗) = L and there exists 0 < λ̃ < max{λ∗, λ∗}
satisfying λ̃ = inf{λ | Tλ(r) has a local minimum at some r0 ∈ (0, 1− ε) such that Tλ(r0) = L}.
Thus by (3.4) and properties (1)–(7)(8)′(9)′, we immediately obtain the results in Theorem 2.6(i)–(iv).

The bifurcation curve Cε is depicted in Fig.4(D).
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Figure 13: Possible graphs of the time-map Tλ(r) for ε 6 ε∗(≈ 0.13123) with varying λ > 0. (i) L∗ < L̄. (ii) L∗ > L̄.

Proof of Theorem 2.8. For 0 < ε 6 ε∗(≈ 0.13123), by Lemmas 3.1, 3.3, 3.6, 3.7, 3.10, 3.12 and 3.14–3.17,

we obtain the properties (1)–(6)(8)′ mentioned above and the following

(7)′ g′(λγ) > 0.

(9)′′ Tλ(r) has exactly one critical point, a local maximum, on (0, γ) for all λ < λγ .

(10) g(λ) has exactly two critical points on (λ1−ε,+∞), a local minimum λm and a local maximum λM

satisfying λ1−ε < λm < λγ < λM .

See Fig.13. Let L∗ = g(λm), L∗ = g(λM ), and L̄ = g(λ̄). Then L∗ < min{L̄, L∗}, and for any L > 0, there

exist positive numbers λ∗, λ∗ such that h(λ∗) = g(λ∗) = L. Moreover, for any L∗ 6 L < L∗ and L 6 L̄, there

exist positive numbers λ̌ and λ̂ with λ∗ < λ̂ < λ̌ < λ∗ such that g(λ̌) = g(λ̂) = L. If L̄ < L∗, then for any

L̄ < L < L∗, there exist positive numbers λ̌, λ̂ and λ̃ with λ̃ 6 λ∗ < λ̂ < λ̌ < λ∗ satisfying g(λ̂) = g(λ̌) = L

and λ̃ = inf{λ | Tλ(r) has a local minimum at some r0 ∈ (0, 1 − ε) such that Tλ(r0) = L}. Thus by (3.4)

and properties (1)–(6)(7)′(8)′(9)′′(10), we immediately obtain the results in Theorem 2.8(i)–(v). The

bifurcation curve Cε is depicted in Fig.6.
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Proof of Theorem 2.7. For ε∗ < ε < 19
100 , by Lemmas 3.1, 3.3, 3.6, 3.7, 3.10, 3.12 and 3.14–3.16, we

obtain the properties (1)–(6)(8)′(9)′′ mentioned above and the following

(10)′ g(λ) is strictly increasing or has exactly two critical points on (λ1−ε,+∞).

See Fig.12(ii) and Fig.13(i)-(ii). Let L̄ = g(λ̄). If g(λ) is strictly increasing on (λ1−ε,+∞), then we can

get the same results (i)–(iii) in the proof of Theorem 2.6 by the same arguments; If g(λ) has two critical

points, then we can get the same results in the proof of Theorem 2.8 by the same arguments. Hence, we

immediately obtain the results in Theorem 2.7(i)–(iii). The bifurcation curve Cε is depicted in Fig.5.

5. Conjectures

Basing on the main theorems and lemmas in previous sections, we propose two conjectures on the global

bifurcation curve Cε of (1.2). The first one is about the shape for the key function g(λ) — the value of

time-map Tλ(r) at the right endpoint of the domain Dε,λ. Recall that L0, ε∗, ε̂, and ε̌ are the known

constants; see Table 1 in Section 1.

Conjecture 5.1 (See Fig.14). Let g(λ) be given in (3.18). There exists a constant ε3 ∈ (0.13, 0.19) such

that if 0 < ε < ε3, then g(λ) has exactly two critical points, a local minimum and a local maximum, on

(λ1−ε,+∞); while if ε3 6 ε < 1, then g(λ) is strictly decreasing on (λ1−ε,+∞).
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Figure 14: A conjecture on the shape of g(λ): there exists a threshold value ε3 ∈ (0.13, 0.19) such that either g has exactly

two critical points, a pair of maximum and a minimum points, or it is strictly decreasing on (λ1−ε,+∞), depending on ε < ε3

(Left) or ε > ε3 (Right).

Remark 5.1. In view of Lemmas 3.12–3.16, it remains to prove that the conjecture is true on (λ1−ε, λ1/2)

for ε ∈ (ε∗, 19
100 ). Denote by λ∗3 the unique critical point of g(λ) provided that ε = ε3, and define L1 := g(λ∗3).

Numerical simulation shows that the threshold values ε3 ≈ 0.14622 > ε∗ and L1 ≈ 0.36983 > L0.

The second conjecture is about the complete classification and evolution of bifurcation curve Cε of (1.2).

Conjecture 5.2 (See Fig.15). For any ε ∈ (0, 1) and L > 0, the global bifurcation curve Cε of (1.2) is strictly

increasing or ⊃-shaped or S-shaped in the (λ, ‖u‖∞)-plane. Precisely, there exist eight positive constants

Li(i = 1, 2, 3) and εj(j = 1, · · · , 5), with L0 < L1 < L2 < L3 and ε1 < ε2 < ε∗ < ε3 <
19
100 < ε̂ < ε4 < ε̌ <

ε5 <
√

2
2 , and six continuous curves L̄1(ε), L̄2(ε), ¯̄L(ε), L∗(ε), L∗(ε), and Ľ(ε) in the (L, ε)-plane such that
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Figure 15: A conjecture on the complete classification and evolution of bifurcation curves Cε of (1.2) in the (λ, ‖u‖∞)-

plane with varying evolution parameters ε ∈ [0, 1) and L > 0: there exist eight constants L1, L2, L3, ε1, ε2, ε3, ε4, ε5, and

six continuous curves L̄1(ε), L̄2(ε), ¯̄L(ε), L∗(ε), L∗(ε), and Ľ(ε) in the (L, ε)-plane such that in the separated regions or on

these curves, Cε is one of three alternatives: increasing, ⊃-shaped or S-shaped, and it is path-connected except for the region

{(L, ε) | 0 6 ε < ε3 and L∗(ε) 6 L < L∗(ε)}, where Cε consists of two disjoint path-connected components: the lower

component is a ⊃-shaped curve, and the upper component is either a decreasing curve, a ⊂-shaped curve, or a singleton. The

case of ε = 0 has been known in Theorem 1.1; some partial results for the conjecture have been proven in Theorems 2.1–2.8.
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the following assertions hold:

(a) L̄1(ε) and L̄2(ε) emanate from the point (0,
√

2
2 ) and the origin respectively and both stop at the point

(L3, ε5); both ¯̄L(ε) and Ľ(ε) emanate from the point (L3, ε5) and take ε = ε4 and ε = ε1 as asymptotes,

respectively; L∗(ε) and L∗(ε) emanate from the origin and the point (L0, 0) respectively and both stop at the

point (L2, ε3); L∗(ε) and L̄2(ε) intersect at (L1, ε2).

(b) Cε is strictly increasing as (L, ε) is in the region above L̄1(ε) and ¯̄L(ε), containing the curves L̄1(ε) and
¯̄L(ε).

(c) Cε is ⊃-shaped as (L, ε) is in the region below L̄1(ε) and to the left of L̄2(ε), containing the curve L̄2(ε).

(d) Cε is S-shaped as (L, ε) is in the region below ¯̄L(ε) and to the right of L̄2(ε). Furthermore, the stopping

point of Cε is on the left (respectively, the right) of the first turning point as (L, ε) is in the subregion below

and to the left (respectively, above and to the right) of Ľ(ε).

(e) Cε is split into two disjoint C1 components as (L, ε) is in the region enclosed by L∗(ε), L∗(ε) and ε = 0,

containing the curve L∗(ε).

(f) Cε has a vertical tangent (respectively, two vertical tangents) as (L, ε) is on the curves L̄1(ε) and ¯̄L(ε)

(respectively, on the curve L̄2(ε)).
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Appendix

In this appendix, we give rigorous proofs of inequalities (3.27) and (3.31) appearing in Lemmas 3.13

and 3.16, respectively. We use an idea from [41, Appendix A] and apply the following Sturm’s Theorem to

determine the precise number of different real zeros of relevant univariate polynomials on the given intervals.

We have used the symbolic manipulator Maple to check all the computations.

Theorem 5.3 (Sturm’s Theorem). Assume that τ1, τ2 ∈ R and Q(x) is a polynomial such that Q(τ1) =

Q(τ2) 6= 0. Let the Sturm sequence {Q0, Q1, . . . , Qk} of Q be defined by

Q0 = Q, Q1 = Q′, Q2 = − rem(Q0, Q1),

Q3 = − rem(Q1, Q2), . . . , 0 = − rem(Qk−1, Qk),

where rem(Qi, Qj) is the remainder of the polynomial long division of Qi by Qj,
′ means d

dx , and k is the

minimal number of polynomial divisions needed to obtain a zero remainder. Let σQ(ζ) denote the number

of sign changes (ignoring zeros) in the sequence

{Q0(ζ), Q1(ζ), . . . , Qk(ζ)}.

Then Q has σQ(τ1)− σQ(τ2) distinct real zeros on the interval (τ1, τ2).
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This theorem can be found in standard textbooks of algebra or polynomials, e.g., [42, 43]. Denote by

sgn(u) the sign function

sgn(u) =


1, if u > 0,

0, if u = 0,

−1, if u < 0.

For given finite real sequence s = {si}mi=1, we also denote by sgn(s) the sign sequence

sgn(s) = {sgn(s1), sgn(s2), . . . , sgn(sm)}.

Proof of inequality (3.27). We divide the proof into three steps:

Step 1. We prove that q(u) > 0 on (0, 1− ε) for all ε ∈ ( 9
20 , 1).

Set qi(u) := ∂i

∂ui (q(u)), i = 1, 2, . . . , 5. Successive differentiation yields

q1(u) = 5(
2ε2

3
− 2)u4 + 4(9− 10ε2

3
)u3 + 3(−16− 4ε4

3
+

32ε2

3
)u2 + 2(4ε4 − 16ε2 + 14)u

+ (−4ε4 + 10ε2 − 6),

q2(u) = 20(
2ε2

3
− 2)u3 + 12(9− 10ε2

3
)u2 + 6(−16− 4ε4

3
+

32ε2

3
)u+ 2(4ε4 − 16ε2 + 14),

q3(u) = 60(
2ε2

3
− 2)u2 + 24(9− 10ε2

3
)u+ 6(−16− 4ε4

3
+

32ε2

3
),

q4(u) = 120(
2ε2

3
− 2)u+ 24(9− 10ε2

3
),

q5(u) = 80ε2 − 240.

Then for any ε ∈ ( 9
20 , 1), we proceed orderly to complete Step 1 as follows:

(1) Since q5(u) < 0 on (0, 1−ε) and q4(1−ε) = −80ε3 +240ε−24 > 0, it follows that q4(u) > 0 on (0, 1−ε);
(2) Since q4(u) > 0 on (0, 1− ε) and q3(1− ε) = 8ε(4ε3− 12ε+ 3) < 0, it follows that q3(u) < 0 on (0, 1− ε);
(3) Since q3(u) < 0 on (0, 1 − ε) and q2(1 − ε) = − 4ε2

3 (4ε3 − 12ε + 5) > 0, it follows that q2(u) > 0 on

(0, 1− ε);
(4) Since q2(u) > 0 on (0, 1 − ε) and q1(1 − ε) = − 2ε3

3 (ε + 2)(ε − 1)2 < 0, it follows that q1(u) < 0 on

(0, 1− ε);
(5) Since q1(u) < 0 on (0, 1− ε) and q(1− ε) = 2ε4

3 (ε+ 2)(ε− 1)2 > 0, it follows that q(u) > 0 on (0, 1− ε).
Step 2. We prove that q1(u) < 0 on (0, 1− ε) for all ε ∈ ( 3

10 ,
9
20 ]. Similar to [41, Appendix A], we prove

it by applying Sturm’s Theorem (Theorem 5.3).

Set q1(u) = q̃1(u,x,x)
3 , where

q̃1(u, a, b) :=(10a2 − 30)u4 + (−40b2 + 108)u3 + (−12b4 + 96a2 − 144)u2

+ (24a4 − 96b2 + 84)u− 12b4 + 30a2 − 18.

Let {ki}301
i=0 be a uniform partition of ( 3

10 ,
9
20 ]. Then for u ∈ (0, 7

10 ) and ε ∈ ( 3
10 ,

9
20 ] (notice that (0, 1− ε) ⊂

(0, 7
10 ) for all ε ∈ ( 3

10 ,
9
20 ]), we have q1(u) <

qi1(u)
3 (i = 0, 1, . . . , 300), where qi1(u) := q̃1(u, ki+1, ki) since

for q̃1(u, a, b) all coefficients of terms an(n = 2, 4) are positive and all coefficients of terms bn(n = 2, 4) are

negative.
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Next we use the Sturm sequence in Theorem 5.3 to prove that qi1(u) < 0 for u ∈ (0, 7
10 ). Let sqi1(u) be

the Sturm sequence of qi1(u) for i = 0, 1, . . . 300. Direct computations yield that for i = 0, 1, . . . 300,

sgn(sqi1(0)) = {−1, 1,−1, 1, 1}, sgn(sqi1(
7

10
)) = {−1,−1, 1,−1, 1}.

Denote by σqi1(u) the number of sign changes in the Sturm sequence qi1(u). Notice that qi1(0) and qi1( 7
10 ) are

the first terms of Sturm sequences sqi1(0) and sqi1( 7
10 ) respectively. Then for i = 0, 1, . . . 300, we have

qi1(0) < 0, qi1(
7

10
) < 0, σqi1(0)− σqi1(

7

10
) = 3− 3 = 0.

This, together with Sturm’s Theorem, implies that qi1(u) < 0 on (0, 7
10 ) for i = 0, 1, . . . 300.

Therefore, q1(u) < 0 on (0, 7
10 ) for ε ∈ ( 3

10 ,
9
20 ]. Since q(0) > 0 and q(1 − ε) > 0 for all ε ∈ (0, 1), it

follows that q(u) > 0 on (0, 1− ε) for all ε ∈ ( 3
10 ,

9
20 ].

Step 3. We prove that q(u) > 0 on (0, 1− ε) for all ε ∈ [ 19
100 ,

3
10 ].

Set q(u) = q̃(u,x,x)
3 , where

q̃(u, a, b) :=(2a2 − 6)u5 + (−10b2 + 27)u4 + (−4b4 + 32a2 − 48)u3 + (12a4 − 48b2 + 42)u2

+ (−12b4 + 30a2 − 18)u+ 3a4 − 6b2 + 3.

Let {ki}1501
i=0 be a uniform partition of [ 19

100 ,
3
10 ]. Then for u ∈ (0, 81

100 ), ε ∈ [ 19
100 ,

3
10 ] and i = 0, 1, . . . , 1500,

we have q(u) > qi(u)
3 , where qi(u) := q̃(u, ki, ki+1) since for q̃(u, a, b) all coefficients of terms an(n = 2, 4)

are positive and all coefficients of terms bn(n = 2, 4) are negative.

Similar to Step 2, we use the Sturm sequence to prove that qi(u) < 0 for u ∈ (0, 81
100 ). Let sqi(u) be the

Sturm sequence of qi(u) for i = 0, 1, . . . 1500. We compute that for i = 0, 1, . . . 1500,

sgn(sqi(0)) =

{
{1,−1, 1,−1,−1, 1} for i = 0, 1, . . . , 350,

{1,−1, 1, 1,−1, 1} for i = 351, 352, . . . , 1500,

sgn(sqi(
81

100
)) = {1,−1,−1, 1,−1, 1}.

Denote by σqi(u) the number of sign changes in the Sturm sequence qi(u). Notice that qi(0) and qi( 81
100 )

are the first terms of Sturm sequences sqi(0) and sqi(
81
100 ) respectively. Then for i = 0, 1, . . . 1500,

qi(0) > 0, qi(
81

100
) > 0, σqi(0)− σqi(

81

100
) = 4− 4 = 0.

This, together with Sturm’s Theorem, implies that qi(u) > 0 on (0, 81
100 ) for i = 0, 1, . . . 1500. Thus q(u) > 0

on (1− ε) ⊂ (0, 81
100 ) for all ε ∈ [ 19

100 ,
3
10 ].

Proof of (3.31). The proof is similar to the previous one, so we here only show the key steps and omit

some tedious calculations.

Set pi(u) := ∂i

∂ui (p(u)), i = 1, 2, . . . , 15. For any ε ∈ (0, 19
100 ), successive differentiation and computation

yield:

(1) p15(u) = 10461394944000(ε2 − 3)3 < 0 and p14(1) = 0. Then p14(u) > 0 for all u ∈ (0, 1− ε).
(2) p13(0) = 4151347200(3− ε2)(64ε6−1644ε4 + 8136ε2−11313) < 4151347200(3− ε2) · (−11019.28739) < 0

and p13(1− ε) = 4151347200(ε2− 3)(1196ε6− 7176ε4 + 10764ε2− 27). Then p13(1− ε) has only one zero on
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(0, 19
100 ), denoting by x1(≈ 0.05126). It follows from (1) that p13(u) < 0 on (0, 1 − ε) for ε ∈ (x1,

19
100 ) and

p13 has only one zero on (0, 1− ε) for ε ∈ (0, x1).

(3) p12(0) = 265686220800ε8−4134741811200ε6+22865620377600ε4−54137718835200ε2+46727085081600 >

4.47725 ·1013 > 0 and p12(1− ε) = (−14778796032ε9 + 133009164288ε7−399027492864ε5 + 400148356608ε3

−3362591232ε− 129330432) · 102. By applying Sturm’s Theorem we obtain that p12(1− ε) has one zero on

(0, 19
100 ), denoting by x2. Since p12(1−ε)|ε=0 < 0 and p12(1−ε)|ε=x1

< 0, we have x2 > x1, and p12(1−ε) < 0

on (0, x2), p12(1− ε) > 0 on (x2,
19
100 ). Combining with (2), we obtain that on (0, 1− ε), p12(u) has no zero

for ε ∈ (x2,
19
100 ), exactly one zero for ε ∈ (0, x2). Since p12(1− ε)|ε= 13

100
> 0, it follows that x2 <

13
100 .

(4) p11(0) = 3512678400ε10− 164457216000ε8 + 1726321766400ε6− 7600318387200ε4 + 15286857062400ε2−
11588006707200 < −1.10360 · 1013 < 0 and p11(1− ε) = 479001600ε(640ε9 − 5760ε7 + 17280ε5 − 17388ε3 +

324ε + 27). By applying Sturm’s Theorem we obtain that p11(1 − ε) has one zero on (0, 19
100 ), denoting it

by x3. Since p11(1− ε)|ε= 19
100

< 0 and p11(1− ε)|ε= 13
100

> 0, we get that x3 >
13
100 > x2, p11(1 − ε) > 0 on

(0, x3), and p11(1− ε) < 0 on (x3,
19
100 ). Combining them with (3), we obtain that on (0, 1− ε), p11(u) has

no zero for ε ∈ (x3,
19
100 ) and exactly one zero for ε ∈ (0, x3).

(5) p10(0) = −3512678400ε10 + 75953203200ε8 − 580898304000ε6 + 2071246464000ε4 − 3517003929600ε2 +

2291304153600 > 2.16431 · 1012 > 0 and p10(1− ε) = −2419200ε2(19184ε9 − 172656ε7 − 24ε6 + 517968ε5 +

144ε4 − 523908ε3 − 216ε2 + 17820ε + 2349). Since p10(1− ε)|ε= 19
100

< 0, by applying Sturm’s Theorem we

get that p10(1 − ε) < 0 on (0, 19
100 ). Combining them with (4), we obtain that p10(u) has exactly one zero

on (0, 1− ε) for ε ∈ (0, 19
100 ).

(6) p9(0) = (−3386880ε12+206115840ε10−2784983040ε8+16266749184ε6−47491702272ε4+67927870080ε2−
37613600640) · 10 < −3.51606 · 1011 < 0 and p9(1 − ε) = 725760ε3(7140ε9 − 64260ε7 − 80ε6 + 192780ε5 +

480ε4 − 196491ε3 − 720ε2 + 11133ε+ 1890) > 725760ε3 · 515.698065 > 0. It follows from (5) that p9(u) has

exactly one zero on (0, 1− ε).
(7) p8(0) = 33868800ε12−883491840ε10+8385914880ε8−38658332160ε6+93269232000ε4−112341116160ε2+

52702151040 > 48644817980 > 0 and p8(1− ε) = −241920ε4(1708ε9 − 15372ε7 − 148ε6 + 46116ε5 + 888ε4 −
47745ε3 − 1332ε2 + 4887ε+ 630) < −241920ε4 · 254.2874762 < 0. Combining them with (6), we obtain that

p8(u) has exactly one zero on (0, 1− ε).
(8) p7(0) = −16934400ε12+291997440ε10−2112082560ε8+7896026880ε6−15884346240ε4+16143442560ε2−
6430596480 < 291997440( 19

100 )10 +7896026880( 19
100 )6 +16143442560( 19

100 )2−6430596480 = −5847446710 < 0

and p7(1− ε) = 40320ε5(493ε9 − 4437ε7 − 408ε6 + 13311ε5 + 2448ε4 − 14920ε3 − 3672ε2 + 4827ε− 432). By

applying Sturm’s Theorem we get that p7(1− ε) has exactly one zero on (0, 19
100 ). Combining them with (7),

we obtain that p7(u) has at most two zeros on (0, 1− ε).
(9) p6(0) = 5685120ε12 − 76930560ε10 + 450593280ε8 − 1398677760ε6 + 2366988480ε4 − 2039022720ε2 +

693696960 > 620022433.1 > 0 and p6(1− ε) = 5760ε6(45ε9 − 405ε7 + 1015ε6 + 1215ε5 − 6090ε4 + 1498ε3 +

9135ε2 − 8139ε + 2131). Since p6(1− ε)|ε= 19
100

> 0, by applying Sturm’s Theorem we obtain that and

p6(1−ε) > 0 on (0, 19
100 ). Combining them with (8), we obtain that p6(u) has at most two zeros on (0, 1−ε).

(10) p5(0) = 6480(1 − ε2)(224ε10 − 2349ε8 + 10366ε6 − 23022ε4 + 24930ε2 − 10329) < 6480(1 − ε2) ·
(−9428.539309) < 0 and p5(1− ε) = −2880ε7(ε+ 2)(ε− 1)2(83ε6 − 498ε4 + 408ε3 + 747ε2 − 1224ε+ 583) <

−2880ε7(ε+ 2)(ε− 1)2 · 349.7910014 < 0. Combining them with (9), we obtain that p5(u) has at most two

zeros on (0, 1− ε).
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(11) p4(0) = 216(ε − 1)2(ε + 1)2(1400ε8 − 11350ε6 + 36341ε4 − 51960ε2 + 26985) > 216(ε − 1)2(ε + 1)2 ·
25108.71003 > 0 and p4(1− ε) = 64ε8(ε+ 2)(ε− 1)2(865ε6 − 5190ε4 + 4255ε3 + 7785ε2 − 12765ε+ 5347) >

64ε8(ε + 2)(ε − 1)2 · 2914.886340 > 0. Combining them with (10), we obtain that p4(u) has at most two

zeros on (0, 1− ε).
(12) p3(0) = 648(1 − ε)3(1 + ε)3(83ε6 − 499ε4 + 1042ε2 − 712) < 648(1 − ε)3(1 + ε)3 · (−674.3798952) < 0

and p3(1− ε) = −32ε9(ε+ 2)2(ε− 1)4(353ε3− 1059ε+ 922) < −32ε9(ε+ 2)2(ε− 1)4 · 720.79 < 0. Combining

them with (11), we obtain that p3(u) has at most two zeros on (0, 1− ε).
(13) p2(0) = 324(ε − 1)4(ε + 1)4(26ε4 − 104ε2 + 103) > 324(ε − 1)4(ε + 1)4 · 99.2456 > 0 and p2(1 − ε) =

144ε10(ε+ 2)2(ε− 1)4(14ε3 − 42ε+ 31) > 144ε10(ε+ 2)2(ε− 1)4 · 23.02 > 0. Combining them with (12), we

obtain that p2(u) has at most two zeros on (0, 1− ε).
(14) p1(0) = 54(1 − ε)5(1 + ε)5(22ε2 − 41) < 54(1 − ε)5(1 + ε)5 · (−40.2058) < 0 and p1(1 − ε) =

− 920
3 ε11(ε + 2)3(ε − 1)6 < 0. Combining them with (13), we obtain that p1(u) has at most two zeros

on (0, 1− ε).
(15) p(0) = 135(ε− 1)6(ε+ 1)6 > 0 and p(1− ε) = 40ε12(ε+ 2)3(ε− 1)6 > 0. Combining them with (14), we

obtain that p(u) has at most two zeros on (0, 1− ε). That is, p(u) changes sign at most twice on (0, 1− ε),
which completes the proof.
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